摘要:
Methods for fabricating integrated circuits using chemical mechanical planarization (CMP) for recessing metal are provided. In an embodiment, a method for fabricating an integrated circuit includes filling a trench with a metal and forming an overburden portion of the metal outside of the trench. The method further includes performing a planarization process with an etching slurry to remove the overburden portion of the metal and to recess the metal within the trench.
摘要:
Methods for fabricating integrated circuits using chemical mechanical planarization (CMP) for recessing metal are provided. In an embodiment, a method for fabricating an integrated circuit includes filling a trench with a metal and forming an overburden portion of the metal outside of the trench. The method further includes performing a planarization process with an etching slurry to remove the overburden portion of the metal and to recess the metal within the trench.
摘要:
A trench in an inter-layer dielectric formed on a semiconductor substrate is defined by a bottom and sidewalls. A copper barrier lines the trench with a copper-growth-promoting liner over the barrier. The trench has bulk copper filling it, and includes voids in the copper. The copper with voids is removed, including from the sidewalls, leaving a void-free copper portion at the bottom. Immersion in an electroless copper bath promotes upward growth of copper on top of the void-free copper portion without inward sidewall copper growth, resulting in a void-free copper fill of the trench.
摘要:
One illustrative method disclosed herein includes forming at least one layer of insulating material above a conductive structure, forming a patterned hard mask comprised of metal above the layer of insulating material, performing at least one etching process to define a cavity in the layer of insulating material, forming a layer of sacrificial material so as to overfill the cavity, performing at least one planarization process to remove a portion of the layer of sacrificial material and the patterned hard mask while leaving a remaining portion of the layer of sacrificial material within the cavity, and removing the remaining portion of the layer of sacrificial material positioned within the cavity.
摘要:
A method of forming a doped TaN Cu barrier adjacent to a Ru layer of a Cu interconnect structure and the resulting device are provided. Embodiments include forming a cavity in a SiO-based ILD; conformally forming a doped TaN layer in the cavity and over the ILD; conformally forming a Ru layer on the doped TaN layer; depositing Cu over the Ru layer and filling the cavity; planarizing the Cu, Ru layer, and doped TaN layer down to an upper surface of the ILD; forming a dielectric cap over the Cu, Ru layer, and doped TaN layer; and filling spaces formed between the dielectric cap and the doped TaN layer.
摘要:
One illustrative method disclosed herein includes forming at least one layer of insulating material above a conductive structure, forming a patterned hard mask comprised of metal above the layer of insulating material, performing at least one etching process to define a cavity in the layer of insulating material, forming a layer of sacrificial material so as to overfill the cavity, performing at least one planarization process to remove a portion of the layer of sacrificial material and the patterned hard mask while leaving a remaining portion of the layer of sacrificial material within the cavity, and removing the remaining portion of the layer of sacrificial material positioned within the cavity.
摘要:
One illustrative method disclosed herein includes forming at least one layer of insulating material above a conductive structure, forming a patterned hard mask comprised of metal above the layer of insulating material, performing at least one etching process to define a cavity in the layer of insulating material that exposes at least a portion of a conductive structure, forming a layer of sacrificial material that covers the exposed portion of the conductive structure, with the layer of sacrificial material in position, performing at least one second etching process to remove the patterned hard mask while leaving the layer of sacrificial material in position within the cavity, and removing the layer of sacrificial material positioned within the cavity.
摘要:
Embodiments described herein provide approaches for interconnect formation in a semiconductor device. Specifically, a Cu layer is removed to a top surface of an Ru layer using CMP, the Cu layer is removed to form a recess within each of a plurality of trenches of a dielectric of the semiconductor device, and the Ru layer is removed using an etch process (e.g., a wet etch). An additional CMP is performed to reach the desired target trench height and to planarize the wafer.
摘要:
Integrated circuits with magnetic tunnel junction (MTJ) structures and methods for fabricating integrated circuits with MTJ structures are provided. An exemplary method for fabricating an integrated circuit includes forming a first conductive line in electrical connection with an underlying semiconductor device. The method exposes a surface of the first conductive line. Further, the method selectively deposits a conductive material on the surface of the first conductive line to form an electrode contact. The method includes forming a MTJ structure over the electrode contact.
摘要:
A process is provided for methods of reducing contamination of the self-forming barrier of an ultra-low k layer during semiconductor fabrication. In one aspect, a method includes: providing a cured ultra-low k film which contains at least one trench, and the pores of the film are filled with a pore-stuffing material; removing exposed pore-stuffing material at the surface of the trench to form exposed pores; and forming a self-forming barrier layer on the surface of the trench.