摘要:
A pattern inspection apparatus is designed to quickly and accurately perform an inspection of an inspecting sample, such as masks, wafers or so forth by irradiating electron beams onto the inspection sample and detecting a secondary electron or a backscattered electron reflected from the surface of the inspecting sample or a transmission electron passing through the inspection sample. The pattern inspection apparatus includes an electron beam generating means including at least one electron gun for generating at least one electron beam irradiating on the surface of the inspecting sample, a movable means for supporting the inspecting sample, a detecting means including a plurality of electron detecting elements for detecting electrons containing information related to the construction of the inspection sample and a detection signal processing means for processing simultaneously or in parallel formation the outputs of the electron detecting elements of the detecting means. Also, when a plurality of electron beams are used for simultaneous irradiation of the inspecting sample, the pattern inspection apparatus is provided a mechanism for avoiding interference of a reflected beam of the adjacent electron beam.
摘要:
A pattern inspection apparatus is designed to quickly and accurately perform an inspection of an inspection sample, such as a mask or a wafer or the like by irradiating electron beams onto the inspection sample and detecting secondary or backscattered electrons reflected from the surface of the inspection sample and/or transmitted electrons passing through the inspection sample. The pattern inspection apparatus includes an electron beam generator including at least one electron gun for generating at least one electron beam irradiating onto the surface of the inspection sample. A movable support is provided for supporting the inspection sample. The apparatus also includes a detector unit having a plurality of electron detecting elements for detecting electrons containing information related to the construction of the inspection sample and a detection signal processor for processing simultaneously or in parallel formation the outputs of the electron detecting elements of the detector. Also, when a plurality of electron beams are used for simultaneous irradiation of the inspection sample, the pattern inspection apparatus is provided with a mechanism for avoiding interference between the reflected electrons of the adjacent electron beams.
摘要:
A pattern inspection apparatus is designed to quickly and accurately perform an inspection of an inspection sample, such as a mask or a wafer or the like by irradiating electron beams onto the inspection sample and detecting secondary or backscattered electrons reflected from the surface of the inspection sample and/or transmitted electrons passing through the inspection sample. The pattern inspection apparatus includes an electron beam generator including at least one electron gun for generating at least one electron beam irradiating onto the surface of the inspection sample. A movable support is provided for supporting the inspection sample. The apparatus also includes a detector unit having a plurality of electron detecting elements for detecting electrons containing information related to the construction of the inspection sample and a detection signal processor for processing simultaneously or in parallel formation the outputs of the electron detecting elements of the detector. Also, when a plurality of electron beams are used for simultaneous irradiation of the inspection sample, the pattern inspection apparatus includes a mechanism for avoiding interference between the reflected electrons of the adjacent electron beams.
摘要:
A method of manufacturing a membrane mask for use in an electron beam exposure apparatus that exposes resist material, comprises manufacturing the membrane mask. A membrane thickness is determined so that an operation time that the electron beam exposure apparatus spends in exposing the resist material to form a predetermined pattern using the membrane mask is comparable to or less than an operation time that the electron beam exposure apparatus spends in exposing the resist material to form the predetermined pattern using complementary masks.
摘要:
A rotary anode assembly for an X-ray source, having a annular V-groove target portion for generating a desired characteristic X-ray emission by an electron beam bombardment applied thereto, wherein the V-grooved target portion is formed from a pair of target members each being formed into a body of rotation with respect to the axis of rotation of the assembly and having a surface including therein a coaxially-formed annular tapered portion. The target members are combined together so that the annular tapered surface portions face to each other with a predetermined angle therebetween, thereby constituting the annular V-groove. The annular V-groove target portion is formed in the peripheral surface of the rotary anode assembly or in the side surface of the anode assembly, which is perpendicular to the axis of rotation. The V-groove target portion is cooled by fluid coolant circulated through the inner space between the target member and the corresponding associated supporting member having a plurality of channels provided for allowing the fluid coolant to be supplied to the space.
摘要:
Regarding a reflected light from any line portion, which is parallel to the longitudinal direction of the alignment mark 11, on the alignment mark 11, the cylindrical lens 33 functions merely as a glass plate, while the cylindrical lens 34 converges the light onto a pixel on the line sensor 35a, performing optical integration and simplifying image processing. Regarding a reflected light from any line portion, which is parallel to the lateral direction of the alignment mark 11, on the alignment mark 11, the cylindrical lens 34 functions merely as a glass plate, while the cylindrical lens 33 magnifies and forms a line image on the line sensor 35a along the pixel row of that. A toroidal lens can be used in place of the cylindrical lenses 33 and 34.