摘要:
In a method of manufacturing a semiconductor memory device, an opening is made in a part of an insulating film formed on a silicon substrate. An amorphous silicon thin film is formed on the insulating film in which the opening has been made and inside the opening. Then, a monocrystal is solid-phase-grown in the amorphous silicon thin film, with the opening as a seed, thereby forming a monocrystalline silicon layer. Then, the monocrystalline silicon layer is heat-treated in an oxidizing atmosphere, thereby thinning the monocrystalline silicon layer and reducing the defect density. Then, a memory cell array is formed on the monocrystalline silicon layer which has been thinned and whose defect density has been reduced.
摘要:
In a method of manufacturing a semiconductor memory device, an opening is made in a part of an insulating film formed on a silicon substrate. An amorphous silicon thin film is formed on the insulating film in which the opening has been made and inside the opening. Then, a monocrystal is solid-phase-grown in the amorphous silicon thin film, with the opening as a seed, thereby forming a monocrystalline silicon layer. Then, the monocrystalline silicon layer is heat-treated in an oxidizing atmosphere, thereby thinning the monocrystalline silicon layer and reducing the defect density. Then, a memory cell array is formed on the monocrystalline silicon layer which has been thinned and whose defect density has been reduced.
摘要:
A semiconductor device is formed on a SOI substrate having a semiconductor substrate, a buried oxide film formed on the semiconductor substrate, and a semiconductor layer formed on the buried oxide film, the semiconductor substrate having a first conductive type, the semiconductor layer having a second conductive type, wherein the buried oxide film has a first opening opened therethrough for communicating the semiconductor substrate with the semiconductor layer, the semiconductor layer is arranged to have a first buried portion buried in the first opening in contact with the semiconductor substrate and a semiconductor layer main portion positioned on the first buried portion and on the buried oxide film, the semiconductor substrate has a connection layer buried in a surface of the semiconductor substrate and electrically connected to the first buried portion in the first opening, the connection layer having the second conductive type, and the semiconductor device includes a contact electrode buried in a second opening, a side surface of the contact electrode being connected to the semiconductor layer main portion, a bottom surface of the contact electrode being connected to the connection layer, the second opening passing through the semiconductor layer main portion and the buried oxide film, and the second opening reaching a surface portion of the connection layer.
摘要:
A nonvolatile semiconductor memory according to an aspect of the invention comprises a semiconductor substrate which has an SOI region and an epitaxial region at its surface, a buried oxide film arranged on the semiconductor substrate in the SOI region, an SOI layer arranged on the buried oxide film, a plurality of memory cells arranged on the SOI layer, an epitaxial layer arranged in the epitaxial region, and a select gate transistor arranged on the epitaxial layer, wherein the SOI layer is made of a microcrystalline layer.
摘要:
A semiconductor memory device includes: a semiconductor substrate; a semiconductor layer formed on the semiconductor substrate with an insulating film interposed therebetween, the semiconductor layer being in contact with the semiconductor substrate via an opening formed in the insulating film; and a NAND cell unit formed on the semiconductor layer with a plurality of electrically rewritable and non-volatile memory cells connected in series and first and second select gate transistors disposed at both ends thereof.
摘要:
A nonvolatile semiconductor memory according to an aspect of the invention comprises a semiconductor substrate which has an SOI region and an epitaxial region at its surface, a buried oxide film arranged on the semiconductor substrate in the SOI region, an SOI layer arranged on the buried oxide film, a plurality of memory cells arranged on the SOI layer, an epitaxial layer arranged in the epitaxial region, and a select gate transistor arranged on the epitaxial layer, wherein the SOI layer is made of a microcrystalline layer.
摘要:
A nonvolatile semiconductor memory according to an aspect of the invention comprises a semiconductor substrate which has an SOI region and an epitaxial region at its surface, a buried oxide film arranged on the semiconductor substrate in the SOI region, an SOI layer arranged on the buried oxide film, a plurality of memory cells arranged on the SOI layer, an epitaxial layer arranged in the epitaxial region, and a select gate transistor arranged on the epitaxial layer, wherein the SOI layer is made of a microcrystalline layer.
摘要:
A nonvolatile semiconductor memory according to an aspect of the invention comprises a semiconductor substrate which has an SOI region and an epitaxial region at its surface, a buried oxide film arranged on the semiconductor substrate in the SOI region, an SOI layer arranged on the buried oxide film, a plurality of memory cells arranged on the SOI layer, an epitaxial layer arranged in the epitaxial region, and a select gate transistor arranged on the epitaxial layer, wherein the SOI layer is made of a microcrystalline layer.
摘要:
A semiconductor memory device includes: a semiconductor substrate; a semiconductor layer formed on the semiconductor substrate with an insulating film interposed therebetween, the semiconductor layer being in contact with the semiconductor substrate via an opening formed in the insulating film; and a NAND cell unit formed on the semiconductor layer with a plurality of electrically rewritable and non-volatile memory cells connected in series and first and second select gate transistors disposed at both ends thereof.
摘要:
One embodiment of a semiconductor device includes: a silicon carbide substrate including first and second principal surfaces; a first-conductive-type silicon carbide layer on the first principal surface; a second-conductive-type first silicon carbide region at a surface of the first silicon carbide layer; a first-conductive-type second silicon carbide region at the surface of the first silicon carbide region; a second-conductive-type third silicon carbide region at the surface of the first silicon carbide region; a second-conductive-type fourth silicon carbide region formed between the first silicon carbide region and the second silicon carbide region, and having an impurity concentration higher than that of the first silicon carbide region; a gate insulator; a gate electrode formed on the gate insulator; an inter-layer insulator; a first electrode connected to the second silicon carbide region and the third silicon carbide region; and a second electrode on the second principal surface.