摘要:
A semiconductor device using a high dielectric constant insulator having reduced leak current as an interelectrode insulator is provided by comprising a first insulator formed on a semiconductor substrate, a first gate electrode formed on the first insulator, a second gate electrode formed above the first gate electrode, and a second crystallized insulator formed between the first gate electrode and the second gate electrode.
摘要:
A method of forming an insulating film includes forming a base film comprising a material whose surface is oxidized by being exposed to an oxidant. A source gas containing a metal material and a first oxidant having a first oxidation force are alternately supplied to form a first insulating film on the base film. A source gas containing a metal material and a second oxidant having a second oxidation force stronger than the first oxidation force are alternately supplied to form a second insulating film on the first insulating film.
摘要:
A method of forming an insulating film includes forming a base film comprising a material whose surface is oxidized by being exposed to an oxidant. A source gas containing a metal material and a first oxidant having a first oxidation force are alternately supplied to form a first insulating film on the base film. A source gas containing a metal material and a second oxidant having a second oxidation force stronger than the first oxidation force are alternately supplied to form a second insulating film on the first insulating film.
摘要:
According to one embodiment, a method is disclosed for manufacturing a nonvolatile memory device. The nonvolatile memory device includes a memory cell connected to a first interconnect and a second interconnect. The method can include forming a first electrode film on the first interconnect. The method can include forming a layer including a plurality of carbon nanotubes dispersed inside an insulator on the first electrode film. At least one carbon nanotube of the plurality of carbon nanotubes is exposed from a surface of the insulator. The method can include forming a second electrode film on the layer. In addition, the method can include forming a second interconnect on the second electrode film.
摘要:
A nonvolatile semiconductor memory includes first and second memory cells having a floating gate and a control gate. The floating gate of the first and second memory cells is comprised a first part, and a second part arranged on the first part, and a width of the second part in an extending direction of the control gate is narrower than that of the first part. A first space between the first parts of the first and second memory cells is filled with one kind of an insulator. The control gate is arranged at a second space between the second parts of the first and second memory cells.
摘要:
A method of manufacturing a semiconductor storage device includes providing an opening portion in a plurality of positions in an insulating film formed on a silicon substrate, and thereafter forming an amorphous silicon film on the insulating film, in which the opening portions are formed, and in the opening portions. Then, trenches are formed to divide the amorphous silicon film, in the vicinity of a midpoint between adjacent opening portions, into a portion on one opening portion side and a portion on the other opening portion side. Next, the amorphous silicon film, in which the trenches are formed, is annealed and subjected to solid-phase crystallization to form a single crystal with the opening portions used as seeds, and thereby a silicon single-crystal layer is formed. Then, a memory cell array is formed on the silicon single-crystal layer.
摘要:
A nonvolatile semiconductor memory includes first and second memory cells having a floating gate and a control gate. The floating gate of the first and second memory cells is comprised a first part, and a second part arranged on the first part, and a width of the second part in an extending direction of the control gate is narrower than that of the first part. A first space between the first parts of the first and second memory cells is filled with one kind of an insulator. The control gate is arranged at a second space between the second parts of the first and second memory cells.
摘要:
A semiconductor device includes a semiconductor substrate including an active area (AA) surrounded by an isolation insulating film, and a nonvolatile memory cell on the AA, the nonvolatile memory cell including a tunnel insulating film on the AA, a FG electrode on the tunnel insulating film, a CG electrode above the FG electrode, and an interelectrode insulating film between the FG electrode and the CG electrode, relating to a cross section in a channel width direction of the nonvolatile memory cell, dimension in the channel width direction of a top surface of the AA is shorter than dimension in the channel width direction of a bottom surface of the tunnel insulating film, and an area of a portion opposing the AA of the tunnel insulating film is smaller than an area of a portion opposing a top surface of the FG electrode of the interelectrode insulating film.
摘要:
According to one embodiment, a memory device includes a nanomaterial aggregate layer of a plurality of fine conductors aggregating via gaps and an insulating material disposed in the gaps.
摘要:
A nonvolatile semiconductor memory device including a semiconductor substrate having a semiconductor layer and an insulating material provided on a surface thereof, a surface of the insulating material is covered with the semiconductor layer, and a plurality of memory cells provided on the semiconductor layer, the memory cells includes a first dielectric film provided by covering the surface of the semiconductor layer, a plurality of charge storage layers provided above the insulating material and on the first dielectric film, a plurality of second dielectric films provided on the each charge storage layer, a plurality of conductive layers provided on the each second dielectric film, and an impurity diffusion layer formed partially or overall at least above the insulating material and inside the semiconductor layer and at least a portion of a bottom end thereof being provided by an upper surface of the insulating material.