摘要:
A plurality of imaging optical lenses (301a to 301c) form a plurality of subject images on a plurality of imaging regions (302a to 302c), respectively. When viewed along a direction parallel with optical axes, at least one straight line connecting corresponding points in at least one pair of the subject images that are formed by at least one pair of the imaging optical lenses is inclined with respect to a direction in which pixels are arranged in the imaging regions. In this way, a high-resolution image always can be obtained regardless of the subject distance.
摘要:
A plurality of lenses 102a to 102d arranged in the same plane form a plurality of subject images on a plurality of imaging regions 104a to 104d. Vertical line directions and horizontal line directions of the pixel arrangement in the respective plurality of imaging regions are equal to one another among the plurality of imaging regions. Further, at least one pair of subject images received by at least one pair of imaging regions having a parallax in the vertical line (or horizontal line) direction among the plurality of imaging regions are shifted from each other by a predetermined amount in the horizontal line (or vertical line) direction. By performing pixel shifting in a direction perpendicular to the direction in which a parallax is generated, it always is possible to obtain a high-resolution image even when the subject distance varies.
摘要:
A plurality of lenses 102a to 102d arranged in the same plane form a plurality of subject images on a plurality of imaging regions 104a to 104d. Vertical line directions and horizontal line directions of the pixel arrangement in the respective plurality of imaging regions are equal to one another among the plurality of imaging regions. Further, at least one pair of subject images received by at least one pair of imaging regions having a parallax in the vertical line (or horizontal line) direction among the plurality of imaging regions are shifted from each other by a predetermined amount in the horizontal line (or vertical line) direction. By performing pixel shifting in a direction perpendicular to the direction in which a parallax is generated, it always is possible to obtain a high-resolution image even when the subject distance varies.
摘要:
A plurality of imaging optical lenses (301a to 301c) form a plurality of subject images on a plurality of imaging regions (302a to 302c), respectively. When viewed along a direction parallel with optical axes, at least one straight line connecting corresponding points in at least one pair of the subject images that are formed by at least one pair of the imaging optical lenses is inclined with respect to a direction in which pixels are arranged in the imaging regions. In this way, a high-resolution image always can be obtained regardless of the subject distance.
摘要:
A plurality of lenses (1a-1d) of a lens module (1), a plurality of wavelength selection regions (2a-2d) each having at least one optical filter, and a plurality of imaging regions (4a-4d) are placed in one-to-one correspondence. At least two of the plurality of wavelength selection regions transmit light in at least one wavelength band among infrared light, red light, green light, and blue light. The distance to an object is calculated based on at least two pieces of image information outputted respectively from at least two imaging regions respectively corresponding to the at least two wavelength selection regions. Furthermore, a camera module outputs an image signal based on image information outputted from at least one of the plurality of imaging regions. This can realize a small and low-cost camera module capable of measuring the distance to an object and capturing the object.
摘要:
A plurality of lenses (1a-1d) of a lens module (1), a plurality of wavelength selection regions (2a-2d) each having at least one optical filter, and a plurality of imaging regions (4a-4d) are placed in one-to-one correspondence. At least two of the plurality of wavelength selection regions transmit light in at least one wavelength band among infrared light, red light, green light, and blue light. The distance to an object is calculated based on at least two pieces of image information outputted respectively from at least two imaging regions respectively corresponding to the at least two wavelength selection regions. Furthermore, a camera module outputs an image signal based on image information outputted from at least one of the plurality of imaging regions. This can realize a small and low-cost camera module capable of measuring the distance to an object and capturing the object.
摘要:
There is provided an imaging device comprising: at least three color filters, including first to third color filters 9R, 9G, and 9B having respectively different filtering characteristics; at least three lens systems, including first to third lens systems 2R, 2G, and 2B respectively associated with the first to third color filters; and a photodetection section including a first photodetector 4R for receiving light transmitted through the first color filter 9R and the first lens system 2R, a second photodetector 4G for receiving light transmitted through the second color filter 9G and the second lens system 2G, and a third photodetector 4B for receiving light transmitted through the third color filter 9B and the third lens system 2B. Each of the first to third photodetectors 4R, 4G, and 4B has a two-dimensional array of photodetection cells such that centers of the photodetection cells are positioned at apices of triangles sharing respective sides with one another, where none of three corner angles of each triangle is equal to 90°.
摘要:
In a method for forming an image of a subject on a solid-state imaging device, a first time period for splitting a light beam from a subject into a plurality of light beams that have different polarization directions and then combining the plurality of light beams to form a single subject image on the solid-state imaging device and a second time period for splitting the light beam from the subject into the plurality of light beams that have different polarization directions and forming a plurality of subject images that overlap each other partially on the solid-state imaging device are switched time-wise. A first image information on the single subject image is obtained based on pieces of signal information in the first time period, and a second image information on one of the plurality of subject images is calculated by using and computing pieces of signal information in the second time period. Then, the high-resolution image of the subject is achieved by using the first image information and the second image information. In this way, it is possible to obtain an image with a high resolution and a reduced noise with substantially no loss of the light beam from the subject.
摘要:
The disk-shaped optical information medium of this invention includes: a first substrate having a center hole; a second substrate having a center hole; and a radiation curable resin interposed between the first and second substrates for bonding together the first and second substrates, wherein the optical information medium further includes a stopper for preventing the radiation curable resin from protruding into the center holes of the substrates, and a space between the first and second substrates of at least a half of a clamp region for clamping the optical information medium is filled with the resin.
摘要:
An optical data medium is disclosed from which information recorded to the surface is reproduced by focusing a laser thereon and reading the light reflected from the data surface. The medium includes a first transparent layer having a top data surface for carrying data, and a second transparent layer having a bottom data surface for carrying data. A semi-transparent layer is inserted between the first and second transparent layers. When the laser is focused on the top data surface, the data carried therein is reproduced, and when the laser is focused on the bottom data surface, the data carried therein is reproduced.