摘要:
Arcing is minimized in a discharge chamber of a gas laser system by utilizing an electrode which comprises a surface portion capable of functioning as one of an anode and a cathode in order to energize a gas mixture in a discharge chamber of the gas discharge laser system, a shoulder portion being positioned on either side of the surface portion and being exposed to the gas mixture, and a coating layer made of electrically insulating material, wherein the coating layer is attached to the shoulder portion by a cold spraying method.
摘要:
Arcing is minimized in a discharge chamber of a gas laser system by utilizing an electrode which comprises a surface portion capable of functioning as one of an anode and a cathode in order to energize a gas mixture in a discharge chamber of the gas discharge laser system, a shoulder portion being positioned on either side of the surface portion and being exposed to the gas mixture, and a coating layer made of electrically insulating material, wherein the coating layer is attached to the shoulder portion by a cold spraying method.
摘要:
Arcing is minimized in a discharge chamber of a gas laser system by utilizing an electrode which comprises a surface portion capable of functioning as one of an anode and a cathode in order to energize a gas mixture in a discharge chamber of the gas discharge laser system, a shoulder portion being positioned on either side of the surface portion and being exposed to the gas mixture, and a coating layer made of electrically insulating material, wherein the coating layer is attached to the shoulder portion by a cold spraying method.
摘要:
The stability of a gas discharge in an excimer or molecular fluorine laser system can be improved by generating multiple discharge pulses in the resonator chamber, instead of a single discharge pulse. Each of these discharges can be optimized in both energy transfer and efficient coupling to the gas. The timing of each discharge can be controlled using, for example, a common pulser component along with appropriate circuitry to provide energy pulses to each of a plurality of segmented main discharge electrodes. Applying the energy to the segmented electrodes rather than to a standard discharge electrode pair allows for an optimization of the temporal shape of the resulting superimposed laser pulse. The optimized shape and higher stability can allow the laser system to operate at higher repetition rates, while minimizing the damage to system and/or downstream optics.
摘要:
An excimer laser is disclosed in which a gas-discharge is formed for exciting an excimer-forming lasing-gas mixture. The gas discharge is formed between an elongated anode electrode and a elongated cathode electrode. The anode is in contact with a dielectric surface and the cathode is supported above the dielectric surface, laterally spaced from and parallel to the anode. The gas-discharge has a surface-discharge or sliding discharge portion extending from the anode over the dielectric surface, and a volume-discharge portion connecting the sliding-discharge portion to the cathode. The volume-discharge excites the lasing-gas mixture. A laser resonator is arranged to generate laser radiation from the excited gas mixture. The sliding-discharge has homogeneous, stable characteristics that are inherited by the volume-discharge. An ion-wind generator provides circulation of the lasing-gas mixture through the volume-discharge.
摘要:
In an excimer laser or a molecular fluorine laser, a heating element is used which is heated to temperatures in excess of 60° C., in order to remove impurities from the laser gas.
摘要:
An excimer or molecular fluorine laser system includes a discharge tube filled with a gas mixture, multiple electrodes within the discharge tube and connected to a discharge circuit for energizing the gas mixture, a resonator for generating a laser beam, and at least one window structure including a first window and a second window. The first window initially seals the discharge tube and transmits the beam. The second window is initially unexposed to the gas mixture. The window structure is configured such that the second window is movable into position for sealing the discharge tube and transmitting the beam when the first window becomes contaminated.
摘要:
Method and system for providing an excimer or molecular fluorine laser including a laser tube filled with a laser gas surrounded by an optical resonator, where the laser tube has multiple electrodes including a pair of main discharge electrodes connected to a discharge circuit for exciting the laser gas to produce a laser output beam. The discharge circuit has an all solid state switch and preferably does not include a transformer. The solid state switch includes multiple solid state devices that may be capable of switching voltages in excess of 12 kV, such as 14-32 kV or more, or the voltage needed to switch the laser. The series of switches has a rise time of approximately less than 300 ns, and preferably around 100 ns or less. The switch may be capable of switching voltages of slightly more than half, but less than the entire voltage needed to produce laser pulses of desired energies, and a voltage doubling circuit may be used to produce the voltage required to produce the desired output pulse energies. An oscillator-amplifier configuration may be used, wherein an oscillator switch may be capable of switching voltages less than the entire voltage needed to produce the desired laser pulse energies, while the amplifier amplifies the pulses to the desired pulse energies.
摘要:
An excimer or molecular fluorine laser includes one or more sliding surface discharge preionization units each including an elongated preionization electrode spaced from one or more associated preionization electrodes by an elongated dielectric within the discharge chamber. The dielectric includes a sliding discharge surface at a long axis, or side, surface of its cross-section substantially facing the discharge volume of the laser. A portion of each of the elongated and associated preionization electrodes conductively contacts a surface of the dielectric portion preferably at a cross-sectional short axis, or top or bottom, side of the dielectric. A significant area of the surface of at least one, and preferably both, of the elongated and associated electrodes contacts the corresponding surface of the dielectric such that the contact area is substantially larger than the area of the sliding discharge surface. Moreover, the sliding surface is preferably oriented and positioned such that generated UV radiation illuminates the laser gas at a substantially central location of the discharge volume.
摘要:
The description relates to a discharge device (1) for pulsed gas lasers in which there are laser electrodes (8, 9) in the space (15) between which discharges with intense UV emission are produced by an arrangement on at least one side, by which the space (15) between the laser electrodes (8, 9) is pre-ionized. Essentially in the invention, the arrangement (2, 3, 4) includes at least one rod electrode (2) which is surrounded by an insulating, preferably ceramic, material (4) and has a conductive contact (5) with the surface (6) of the insulating ceramic material (4), and on this surface (6) there is at least one counter-electrode (7) spaced from the rod electrode (2), the counter-electrode (7) being conductively connected to one of the laser electrodes (8), so that sliding discharge tracks or paths (13) are formed between the at least one rod electrode (2) and the counter-electrode (7). This provides a discharge device (1) making the laser beam generation markedly more effective and lengthening the useful life of the components and gas filling of the laser.