摘要:
A method of forming a channel region for a transistor includes forming a layer of silicon germanium (SiGe) above a substrate, forming an oxide layer above the SiGe layer wherein the oxide layer includes an aperture in a channel area and the aperture is filled with a SiGe feature, depositing a layer having a first thickness above the oxide layer and the SiGe feature, and forming source and drain regions in the layer.
摘要:
The threshold voltage shift exhibited by strained silicon NMOS devices is compensated with respect to the threshold voltages of PMOS devices formed on the same substrate by increasing the work function of the NMOS gates. The NMOS gate work function exceeds the PMOS gate work function so as to compensate for a difference in the respective NMOS and PMOS threshold voltages. The NMOS gates are preferably fully silicided while the PMOS gates are partially silicided.
摘要:
A method of forming a finFET transistor using a sidewall epitaxial layer includes forming a silicon germanium (SiGe) layer above an oxide layer above a substrate, forming a cap layer above the SiGe layer, removing portions of the SiGe layer and the cap layer to form a feature, forming sidewalls along lateral walls of the feature, and removing the feature.
摘要:
A method of forming a channel region for a transistor includes forming a layer of silicon germanium (SiGe) above a substrate, forming an oxide layer above the SiGe layer wherein the oxide layer includes an aperture in a channel area and the aperture is filled with a SiGe feature, depositing a layer having a first thickness above the oxide layer and the SiGe feature, and forming source and drain regions in the layer.
摘要:
Strained silicon is grown on a dielectric material in a trench in a silicon germanium layer at a channel region of a MOSFET after fabrication of other MOSFET elements using a removable dummy gate process to form an SOI MOSFET. The MOSFET is fabricated with the dummy gate in place, the dummy gate is removed, and a trench is formed in the channel region. Dielectric material is grown in the trench, and strained silicon is then grown from the silicon germanium trench sidewalls to form a strained silicon layer that extends across the dielectric material. The silicon germanium sidewalls impart strain to the strained silicon, and the presence of the dielectric material allows the strained silicon to be grown as a thin fully depleted layer. A replacement gate is then formed by damascene processing.
摘要:
An exemplary embodiment relates to a method of FinFET channel structure formation. The method can include providing a compound semiconductor layer above an insulating layer, providing a trench in the compound semiconductor layer, and providing a strained semiconductor layer above the compound semiconductor layer and within the trench. The method can also include removing the strained semiconductor layer from above the compound semiconductor layer, thereby leaving the strained semiconductor layer within the trench and removing the compound semiconductor layer to leave the strained semiconductor layer and form the fin-shaped channel region.
摘要:
A method of manufacturing an integrated circuit (IC) utilizes a shallow trench isolation (STI) technique. The shallow trench isolation technique is used in strained silicon (SMOS) process. The strained material is formed after the trench is formed. The process can be utilized on a compound semiconductor layer above a box layer.
摘要:
The thermal conductivity of strained silicon MOSFETs and strained silicon SOI MOSFETs is improved by providing a silicon germanium carbide thermal dissipation layer beneath a silicon germanium layer on which strained silicon is grown. The silicon germanium carbide thermal dissipation layer has a higher thermal conductivity than silicon germanium, thus providing more efficient removal of thermal energy generated in active regions.
摘要:
A method of manufacturing an integrated circuit (IC) utilizes a shallow trench isolation (STI) technique. The shallow trench isolation technique is used in strained silicon (SMOS) process. The strained material is formed after the trench is formed. The process can be utilized on a compound semiconductor layer above a box layer.
摘要:
A method of manufacturing an integrated circuit (IC) utilizes a shallow trench isolation (STI) technique. The shallow trench isolation technique is used in strained silicon (SMOS) process. The strained material is formed after the trench is formed. The process can be utilized on a compound semiconductor layer above a box layer.