摘要:
A router comprises an interface for receiving packets, wherein the packets include Multiprotocol Label Switching (MPLS) labels having the same label value that corresponds to an MPLS label switched path (LSP), and wherein each of the MPLS packets includes MPLS experimental (EXP) bits defined to identify a class of service to which the respective packet belongs. The router is a transit router along the MPLS LSP, and further includes a control unit that, for each of the packets, accesses forwarding information to determine whether to forward the packet along the LSP or to redirect the packet along a second LSP based on the classes of service specified in the EXP bits. The router receives policies via a user interface, and applies the policies to index into the forwarding information to select a forwarding entry, wherein the index is responsive to the label value in combination with the EXP bits.
摘要:
This disclosure describes techniques for protecting an endpoint of a label switched path. In one embodiment, a system includes an ingress router, a primary egress router, backup router, and a point of local repair (PLR) router. The ingress router, the PLR router, and the first egress router form a first label switched path. The backup router provides protection for the primary egress router such that the backup router provides routing services for the first egress router when the first egress router is not available. The primary egress router and the backup router share an anycast IP address. The backup router advertises a route to reach the primary egress router, but upon receiving a packet intended for the primary egress router, the backup router identifies the destination of the packet and forwards the packet to the destination instead of the primary egress router along a different route.
摘要:
In general, techniques are described for providing extended administrative groups in networks. A network device comprising an interface and a control unit may implement the techniques. The interface receives a routing protocol message that advertises a link. This message includes a field for storing first data associated with the link in accordance with the routing protocol. The field is defined by the routing protocol as a field having a different function from an administrative group field defined by the same routing protocol. The control unit determines that this field has been repurposed to store second data, wherein this second data specifies an extended administrative group for the link different from those that may be specified by the administrative group field. The control unit then updates routing information to associate the advertised link with the extended administrative group and performs path selection to select paths based on the updated routing information.
摘要:
In general, techniques are described for providing extended administrative groups in networks. A network device comprising an interface and a control unit may implement the techniques. The interface receives a routing protocol message that advertises a link. This message includes a field for storing first data associated with the link in accordance with the routing protocol. The field is defined by the routing protocol as a field having a different function from an administrative group field defined by the same routing protocol. The control unit determines that this field has been repurposed to store second data, wherein this second data specifies an extended administrative group for the link different from those that may be specified by the administrative group field. The control unit then updates routing information to associate the advertised link with the extended administrative group and performs path selection to select paths based on the updated routing information.
摘要:
In general, techniques are described for using routing information obtained by operation of network routing protocols to dynamically generate network and cost maps for an application-layer traffic optimization (ALTO) service. For example, an ALTO server of an autonomous system (AS) receives routing information from routers of the AS by listening for routing protocol updates outputted by the routers and uses the received topology information to dynamically generate a network map of PIDs that reflects a current topology of the AS and/or of the broader network that includes the AS. Additionally, the ALTO server dynamically calculates inter-PID costs using received routing information that reflects current link metrics. The ALTO server then assembles the inter-PID costs into a cost map that the ALTO server may provide, along with the network map, to clients of the ALTO service.
摘要:
In general, techniques are described for using routing information obtained by operation of network routing protocols to dynamically generate network and cost maps for an application-layer traffic optimization (ALTO) service. For example, an ALTO server of an autonomous system (AS) receives routing information from routers of the AS by listening for routing protocol updates outputted by the routers and uses the received topology information to dynamically generate a network map of PIDs that reflects a current topology of the AS and/or of the broader network that includes the AS. Additionally, the ALTO server dynamically calculates inter-PID costs using received routing information that reflects current link metrics. The ALTO server then assembles the inter-PID costs into a cost map that the ALTO server may provide, along with the network map, to clients of the ALTO service.
摘要:
In general, techniques are described for distributing traffic engineering (TE) link information across network routing protocol domain boundaries using a routing protocol. In one example, a network device logically located within a first routing protocol domain includes a routing protocol module executing on a control unit to execute an exterior gateway routing protocol. The routing protocol module of the network device receives an exterior gateway routing protocol advertisement from a router logically located within a second routing protocol domain and decodes traffic engineering information for a traffic engineering link from the exterior gateway routing protocol advertisement. A path computation module of the network device computes a traffic engineered path by selecting the traffic engineering link for inclusion in the traffic engineered path based on the traffic engineering information.
摘要:
In general, techniques are described for extending routing protocol advertisements to include respective attributes of constituent links of an aggregation group. In one example, a network device includes a management interface that receives configuration information that specifies first and second constituent links for a layer two (L2) aggregated interface. The first and second constituent links are physical links connected to respective physical interfaces of forwarding units of the network device. A routing protocol daemon of the control unit generates a link state message that specifies layer three (L3) routing information associated with the aggregated interface and further specifies an attribute of the first constituent link and an attribute of the second constituent link. The routing protocol daemon sends the link state message from the network device to another network device of the network in accordance with a routing protocol.
摘要:
In general, techniques are described for managing content request referrals by keying content requests to a composite key data structure that maps end-user address prefixes and content identifiers to content delivery network servers of downstream CDNs. In one example, a CDN exchange includes a communication module to receive first network prefixes and first content identifiers from a first secondary content delivery network and to receive second network prefixes and second content identifiers from a second secondary content delivery network. A request router of the CDN exchange redirects the content request to the first secondary content delivery network or to the second secondary content delivery network according to a network address of the end user device and a content identifier for the content request.
摘要:
Routers balance network traffic among multiple paths through a network according to an amount of bandwidth that can be sent on an outgoing interface computed for each of the paths. For example, a router receives a link bandwidth for network links that are positioned between the first router and a second router of the network, and selects a plurality of forwarding paths from the first router to the second router. Upon determining that one of the network links is shared by multiple of the plurality of forwarding paths, the router computes a path bandwidth for each of the plurality of outgoing interfaces so as to account for splitting of link bandwidth of the shared network link across the multiple forwarding paths that share the network link. The router assigns packet flows to the forwarding paths based at least on the computed amount of bandwidth for each of the outgoing interfaces.