Abstract:
Provided is a method for preparing lead iodide, which controls the crystal form of lead iodide through temperature, including: dissolving a lead compound in a first acid solution and adding an iodine compound to form a reaction solution including the first lead iodide; and heating the reaction solution to a temperature of 60° C. or more and standing at a constant temperature, to obtain the second lead iodide, wherein a peak intensity of the (003) crystal plane of the second lead iodide is greater than or equal to a peak intensity of the (110) crystal plane. Provided is also a method for preparing the perovskite film.
Abstract:
Provided is a perovskite film including crystal grains with a crystalline structure of [A][B][X]3.n[C], wherein [A], [B], [X], [C] and n are as defined in the specification. The present disclosure further provides a precursor composition of perovskite film, method for producing of perovskite film, and semiconductor element including such films, as described above. With the optimal lattice arrangement, the perovskite film shows the effects of small surface roughness, and the semiconductor element thereof can thus achieve high efficiency and stability even with large area of film formation, thereby indeed having prospect of the application.
Abstract:
Provided are a perovskite film and a manufacturing method thereof. The method includes the following steps. A perovskite precursor material is coated in a linear direction on a substrate with a temperature between 100° C. and 200° C., wherein a concentration of the perovskite precursor material is between 0.05 M and 1.5 M. An infrared light irradiation is performed on the perovskite precursor material to cure the perovskite precursor material to form a thin film including a compound represented by formula (1). The perovskite film has a single 2D phase structure or has a structure in which a 3D phase structure is mixed with a single 2D phase structure. (RNH3)2MA(n−1)M1nX(3n+1) formula (1), wherein the definitions of R, MA, M1, X, and n are as defined above.
Abstract:
Provided is a perovskite film including crystal grains with a crystalline structure of [A][B][X]3.n[C], wherein [A], [B], [X], [C] and n are as defined in the specification. The present disclosure further provides a precursor composition of perovskite film, method for producing of perovskite film, and semiconductor element including such films, as described above. With the optimal lattice arrangement, the perovskite film shows the effects of small surface roughness, and the semiconductor element thereof can thus achieve high efficiency and stability even with large area of film formation, thereby indeed having prospect of the application.
Abstract:
A method for fabricating an absorbing layer of a solar cell and a thermal treatment device thereof adapted for forming an absorbing layer on a substrate are disclosed. The method includes the following steps. First, a solid-phase vapor source in a chamber and an absorbing layer precursor on a substrate are maintained by a predetermined distance. The solid-phase vapor source contains tin. The absorbing layer precursor contains copper, zinc, tin and sulfur. The temperature inside the chamber is raised to a forming temperature, so that the absorbing layer precursor forms an absorbing layer on the substrate.
Abstract:
A method for preparing an absorbing layer of a solar cell includes the following steps. An absorbing layer precursor containing at least one group XIV element is loaded on a substrate. A solid vapor source containing a group XIV element, the same as the group XIV element in the absorbing layer precursor is provided. The solid vapor source corresponds to the absorbing layer precursor. The solid vapor source and the absorbing layer precursor are kept apart by a distance. A heating process is performed so that the absorbing layer precursor forms an absorbing layer, the solid vapor source is vaporized and generates a gas containing the group XIV element, and the gas containing the group XIV element inhibits the effusion of the group XIV element of the absorbing layer precursor so that the proportion of the group XIV element in the formed absorbing layer is consistent.
Abstract:
Provided are a perovskite film and a manufacturing method thereof. The method includes the following steps. A perovskite precursor material is coated in a linear direction on a substrate with a temperature between 100° C. and 200° C., wherein a concentration of the perovskite precursor material is between 0.05 M and 1.5 M. An infrared light irradiation is performed on the perovskite precursor material to cure the perovskite precursor material to form a thin film including a compound represented by formula (1). The perovskite film has a single 2D phase structure or has a structure in which a 3D phase structure is mixed with a single 2D phase structure. (RNH3)2MA(n−1)M1nX(3n+1) formula (1), wherein the definitions of R, MA, M1, X, and n are as defined above.
Abstract:
Provided are a method for forming a perovskite layer and a method for forming a structure comprising a perovskite layer. The method for forming a perovskite layer includes the following steps: coating a perovskite precursor material on a substrate; and performing a heating treatment to the substrate; and irradiating the perovskite precursor material with infrared light.