Abstract:
In an embodiment, a method of testing a radio frequency integrated circuit (RFIC) includes generating high-frequency test signals using the on-chip test circuit, measuring signal levels using on-chip power detectors, and controlling and monitoring the on-chip test circuit using low-frequency signals. The RFIC circuit is configured to operate at high frequencies, and an on-chip test circuit that includes frequency generation circuitry configured to operate during test modes.
Abstract:
In accordance with an embodiment, a method for operating a radio frequency (RF) transceiver includes frequency-translating, using a local oscillator signal having a calibrated phase shift, a signal received at an antenna of an RF transceiver; filtering the frequency-translated signal using a programmable filter of the RF transceiver to produce a filtered frequency-translated signal; and changing a cutoff frequency of the programmable filter from a first cutoff frequency to a second cutoff frequency in response to the RF transceiver switching operation from a first mode to a second mode.
Abstract:
In accordance with an embodiment, a circuit includes a mixer having a signal input port, a local oscillator input port and an output port, a lowpass filter circuit having an input coupled to the output port of the mixer and a terminal configured to be connected to a shunt capacitor, and a difference circuit having a first input coupled to the output port of the mixer, and a second input coupled to an output of the lowpass filter. The output of the difference circuit substantially rejects a DC signal component at the output port of the mixer.
Abstract:
A method for determining the range of an object includes transmitting successive radar chirps, adding a frequency offset to the successive radar chirps, the frequency offset being a fraction of a range frequency bin, receiving return signals, constructing frequency transforms from each of the return signals, adding each of the frequency transforms together to create a composite frequency transform, and interpolating the range of the object from a frequency peak detected in the composite frequency transform.
Abstract:
Coupling apparatuses, circuits having such coupling apparatuses and corresponding methods are provided that involve a first and a second signal being coupled out from an out-coupling circuit part and being separately coupled into first and second circuit pmts. The use of different coupling mechanisms effects signal separation in this case. In particular, one of the signals can be coupled as a differential signal and the other as a common mode signal.
Abstract:
In accordance with an embodiment, a method includes receiving a first differential logic signal using a first branch of a circuit that extends from a voltage supply of the circuit as far as an earth terminal of the circuit and has at least one first differential transistor pair, receiving a second differential logic signal using a second branch of the circuit that extends from the voltage supply to the earth terminal and has at least one second differential transistor pair, conducting a current flow between the first branch and the second branch, and outputting an output signal by the second branch.
Abstract:
A voltage controlled oscillator arrangement is disclosed. The arrangement includes a voltage controlled oscillator and a bypass component. The voltage controlled oscillator has an output and a tuning port. The output provides an output signal at an operating frequency. The tuning port is configured to select the operating frequency according to an applied voltage. The voltage controlled oscillator has active portions and inactive portions. During the active portions, the output signal is at a non-zero value. The bypass component is configured to apply a bypass compensating signal to the tuning port during the active portions of the voltage controlled oscillator. The bypass compensating signal compensates for an oscillator temperature of the voltage controlled oscillator.
Abstract:
One embodiment of the present invention relates to a transmitter within a single integrated chip substrate, which is capable of continuous beam steering of a transmitted radar beam as well as an option to change the physical position of the origin of the transmit radar beam. The transmitter has a signal generator that generates an RF signal. The RF signal is provided to a plurality of independent transmission chains, which contain independently operated vector modulators configured to introduce an individual phase adjustment to the high frequency input signal to generate separate RF output signals. A control unit is configured to selectively activate a subset of (e.g., two or more) the independent transmission chains. By activating the subset of independent transmission chains to generate RF output signals with separate phases, a beam steering functionality is enabled. Furthermore, the subset defines a changeable position of the transmitted radar beam.
Abstract:
In accordance with an embodiment, a method includes receiving a first differential logic signal using a first branch of a circuit that extends from a voltage supply of the circuit as far as an earth terminal of the circuit and has at least one first differential transistor pair, receiving a second differential logic signal using a second branch of the circuit that extends from the voltage supply to the earth terminal and has at least one second differential transistor pair, conducting a current flow between the first branch and the second branch, and outputting an output signal by the second branch.
Abstract:
In accordance with an embodiment, a method for operating a radio frequency (RF) transceiver includes frequency-translating, using a local oscillator signal having a calibrated phase shift, a signal received at an antenna of an RF transceiver; filtering the frequency-translated signal using a programmable filter of the RF transceiver to produce a filtered frequency-translated signal; and changing a cutoff frequency of the programmable filter from a first cutoff frequency to a second cutoff frequency in response to the RF transceiver switching operation from a first mode to a second mode.