摘要:
According to an embodiment of a semiconductor device, the semiconductor device includes a semiconductor body having a main surface, the semiconductor body including a drift region of monocrystalline SiC, the drift region being of a first conductivity type, and a metallization arranged at the main surface. In a cross-section which is substantially orthogonal to the main surface, the semiconductor body further includes a contact region of the monocrystalline SiC directly adjoining the drift region and the metallization, and an anode region of a semiconductor material having a lower band-gap than the monocrystalline SiC. The contact region is of a second conductivity type. The anode region is in ohmic contact with the metallization and forms a heterojunction with the drift region.
摘要:
A method of manufacturing a semiconductor substrate includes providing a semiconductor wafer having a first surface and a second surface opposite the first surface, and forming, when seen in a cross-section perpendicular to the first surface, cavities in the semiconductor wafer at a first distance from the first surface. The cavities are laterally spaced from each other by partition walls formed by semiconductor material of the wafer. The cavities form a separation region. The method further includes forming a semiconductor layer on the first surface of the semiconductor wafer, and breaking at least some of the partition walls by applying mechanical impact to the partition walls to split the semiconductor wafer along the separation region.
摘要:
A method for producing a semiconductor includes providing a p-doped semiconductor body having a first side and a second side; implanting protons into the semiconductor body via the first side to a target depth of the semiconductor body; bonding the first side of the semiconductor body to a carrier substrate; forming an n-doped zone in the semiconductor body by heating the semiconductor body such that a pn junction arises in the semiconductor body; and removing the second side of the semiconductor body at least as far as a space charge zone spanned at the pn junction.
摘要:
According to an embodiment of a semiconductor device, the semiconductor device includes a semiconductor body having a main surface, the semiconductor body including a drift region of monocrystalline SiC, the drift region being of a first conductivity type, and a metallization arranged at the main surface. In a cross-section which is substantially orthogonal to the main surface, the semiconductor body further includes a contact region of the monocrystalline SiC directly adjoining the drift region and the metallization, and an anode region of a semiconductor material having a lower band-gap than the monocrystalline SiC. The contact region is of a second conductivity type. The anode region is in ohmic contact with the metallization and forms a heterojunction with the drift region.
摘要:
According to an embodiment of a semiconductor device, the semiconductor device includes a semiconductor body having a main surface, the semiconductor body including a drift region of a first band-gap material, the drift region being of a first conductivity type, and a metallization arranged at the main surface. In a cross-section which is substantially orthogonal to the main surface, the semiconductor body further includes a contact region of the first band-gap material directly adjoining the drift region and the metallization, and an anode region of a second band-gap material having a lower band-gap than the first band-gap material. The contact region is of a second conductivity type. The anode region is in ohmic contact with the metallization and forms a heterojunction with the drift region.
摘要:
A method for producing a semiconductor includes providing a p-doped semiconductor body having a first side and a second side; implanting protons into the semiconductor body via the first side to a target depth of the semiconductor body; bonding the first side of the semiconductor body to a carrier substrate; forming an n-doped zone in the semiconductor body by heating the semiconductor body such that a pn junction arises in the semiconductor body; and removing the second side of the semiconductor body at least as far as a space charge zone spanned at the pn junction.
摘要:
A transistor includes a source, a drain spaced apart from the source, and a heterostructure body having a two-dimensional charge carrier gas channel for connecting the source and the drain. The transistor further includes a semiconductor field plate disposed between the source and the drain. The semiconductor field plate is configured to at least partly counterbalance charges in the drain when the transistor is in an off state in which the channel is interrupted and a blocking voltage is applied to the drain. The counterbalance charge provided by the semiconductor field plate is evenly distributed over a plane or volume of the semiconductor field plate. Various semiconductor field plate configurations and corresponding manufacturing methods are described herein.
摘要:
According to an embodiment of a semiconductor device, the semiconductor device includes a semiconductor body having a main surface, the semiconductor body including a drift region of a first band-gap material, the drift region being of a first conductivity type, and a metallization arranged at the main surface. In a cross-section which is substantially orthogonal to the main surface, the semiconductor body further includes a contact region of the first band-gap material directly adjoining the drift region and the metallization, and an anode region of a second band-gap material having a lower band-gap than the first band-gap material. The contact region is of a second conductivity type. The anode region is in ohmic contact with the metallization and forms a heterojunction with the drift region.
摘要:
A heterojunction semiconductor device having a semiconductor body is provided. The semiconductor body includes a first semiconductor region comprising aluminum gallium nitride, a second semiconductor region comprising gallium nitride and forming a heterojunction with the first semiconductor region, an n-type third semiconductor region, a p-type fourth semiconductor region forming a first rectifying junction with the third semiconductor region, and an n-type seventh semiconductor region adjoining the heterojunction formed between the first semiconductor region and the second semiconductor region. The first rectifying junction forms a rectifying junction of a transistor structure which is in ohmic contact with the seventh semiconductor region. Further, a method for producing such a heterojunction semiconductor device is provided.
摘要:
A transistor includes a source, a drain spaced apart from the source, and a heterostructure body having a two-dimensional charge carrier gas channel for connecting the source and the drain. The transistor further includes a semiconductor field plate disposed between the source and the drain. The semiconductor field plate is configured to at least partly counterbalance charges in the drain when the transistor is in an off state in which the channel is interrupted and a blocking voltage is applied to the drain. The counterbalance charge provided by the semiconductor field plate is evenly distributed over a plane or volume of the semiconductor field plate. Various semiconductor field plate configurations and corresponding manufacturing methods are described herein.