Abstract:
A sensor device includes: a semiconductor substrate having a sensing region which extends vertically below a main surface region of the semiconductor substrate into the substrate; a semiconductor capping layer that extends vertically below the main surface region into the substrate; a buried deep trench structure that extends vertically below the capping layer into the substrate and laterally relative to the sensing region, the buried deep trench structure including a doped semiconductor layer that extends from a surface region of the buried deep trench structure into the substrate; a trench doping region that extends from the doped semiconductor layer of the buried deep trench structure into the substrate; and electronic circuitry for the sensing region in a capping region of the substrate vertically above the buried deep trench structure. Methods of manufacturing the sensor device are also provided.
Abstract:
Embodiments relate to sensors and more particularly to structures for and methods of forming sensors that are easier to manufacture as integrated components and provide improved deflection of a sensor membrane, lamella or other movable element. In embodiments, a sensor comprises a support structure for a lamella, membrane or other movable element. The support structure comprises a plurality of support elements that hold or carry the movable element. The support elements can comprise individual points or feet-like elements, rather than a conventional interconnected frame, that enable improved motion of the movable element, easier removal of a sacrificial layer between the movable element and substrate during manufacture and a more favorable deflection ratio, among other benefits.
Abstract:
Embodiments relate to sensors and more particularly to structures for and methods of forming sensors that are easier to manufacture as integrated components and provide improved deflection of a sensor membrane, lamella or other movable element. In embodiments, a sensor comprises a support structure for a lamella, membrane or other movable element. The support structure comprises a plurality of support elements that hold or carry the movable element. The support elements can comprise individual points or feet-like elements, rather than a conventional interconnected frame, that enable improved motion of the movable element, easier removal of a sacrificial layer between the movable element and substrate during manufacture and a more favorable deflection ratio, among other benefits.
Abstract:
According to various embodiments, a method for processing a wafer may include: forming at least one hollow chamber and a support structure within the wafer, the at least one hollow chamber defining a cap region of the carrier located above the at least one hollow chamber and a bottom region of the carrier located below the at least one hollow chamber and an edge region surrounding the cap region of the carrier, wherein a surface area of the cap region is greater than a surface area of the edge region, and wherein the cap region is connected to the bottom region by the support structure; removing the cap region in one piece from the bottom region and the edge region.
Abstract:
Embodiments relate to sensors and more particularly to structures for and methods of forming sensors that are easier to manufacture as integrated components and provide improved deflection of a sensor membrane, lamella or other movable element. In embodiments, a sensor comprises a support structure for a lamella, membrane or other movable element. The support structure comprises a plurality of support elements that hold or carry the movable element. The support elements can comprise individual points or feet-like elements, rather than a conventional interconnected frame, that enable improved motion of the movable element, easier removal of a sacrificial layer between the movable element and substrate during manufacture and a more favorable deflection ratio, among other benefits.
Abstract:
A method for manufacturing a micromechanical system includes forming in a Front-End-of-Line (FEOL) process transistors in a transistor region; after the FEOL-process, forming a sacrificial layer; structuring the sacrificial layer to form a structured sacrificial layer; forming a functional layer at least partially covering the structured sacrificial layer; and removing the sacrificial layer to create a cavity.
Abstract:
A sensor device includes: a semiconductor substrate having a sensing region which extends vertically below a main surface region of the semiconductor substrate into the substrate; a semiconductor capping layer that extends vertically below the main surface region into the substrate; a buried deep trench structure that extends vertically below the capping layer into the substrate and laterally relative to the sensing region, the buried deep trench structure including a doped semiconductor layer that extends from a surface region of the buried deep trench structure into the substrate; a trench doping region that extends from the doped semiconductor layer of the buried deep trench structure into the substrate; and electronic circuitry for the sensing region in a capping region of the substrate vertically above the buried deep trench structure. Methods of manufacturing the sensor device are also provided.
Abstract:
Embodiments relate to sensors and more particularly to structures for and methods of forming sensors that are easier to manufacture as integrated components and provide improved deflection of a sensor membrane, lamella or other movable element. In embodiments, a sensor comprises a support structure for a lamella, membrane or other movable element. The support structure comprises a plurality of support elements that hold or carry the movable element. The support elements can comprise individual cylindrical points or feet-like elements with straight or concave sidewalls, rather than a conventional interconnected frame, that enable improved motion of the movable element, easier removal of a sacrificial layer between the movable element and substrate during manufacture and a more favorable deflection ratio, among other benefits.
Abstract:
Embodiments relate to sensors and more particularly to structures for and methods of forming sensors that are easier to manufacture as integrated components and provide improved deflection of a sensor membrane, lamella or other movable element. In embodiments, a sensor comprises a support structure for a lamella, membrane or other movable element. The support structure comprises a plurality of support elements that hold or carry the movable element. The support elements can comprise individual points or feet-like elements, rather than a conventional interconnected frame, that enable improved motion of the movable element, easier removal of a sacrificial layer between the movable element and substrate during manufacture and a more favorable deflection ratio, among other benefits.
Abstract:
A method for manufacturing a micromechanical system is shown. The method comprises the steps of forming in a front end of line (FEOL) process a transistor in a transistor region. After the FEOL process, a protective layer is deposited in the transistor region, wherein the protective layer comprises an isolating material, e.g. an oxide. A structured sacrificial layer is formed at least in a region which is not the transistor region. Furthermore, a functional layer is formed which is at least partially covering the structured sacrificial layer. After the functional layer is formed removing the sacrificial layer in order to create a cavity between the functional layer and a surface, where the sacrificial layer was deposited on. The protective layer protects the transistor from being damaged especially during etching processes in further processing steps in MOL (middle of line) and BEOL (back end of line) processes. Using an oxide for said protective layer is advantageous, since the same oxide may be used as the basis for a metallization process in the BEOL. Therefore, the protective layer may remain over the transistor and does not need to be removed like the sacrificial layer, which is typically used as a protection for the transistor. Therefore, the protective layer becomes part of the oxide coverage, which is applied before the BEOL process.