Surface gratings, photonics circuit, and method for wafer-level testing thereof

    公开(公告)号:US10935723B2

    公开(公告)日:2021-03-02

    申请号:US16440814

    申请日:2019-06-13

    Abstract: A surface grating coupler for polarization splitting or diverse includes a planar layer and an array of scattering elements arranged in the planar layer at intersections of a first set of concentric elliptical curves crossing with a second set of concentric elliptical curves rotated proximately 90 or 180 degrees to form a two-dimensional (2D) grating. Additionally, the grating coupler includes a first waveguide in double-taper shape and a second waveguide in double-taper shape respectively for split or diverse an incident light into the 2D grating into two output light to two output ports with a same (either TE or TM) polarization mode or one output port with TE polarization mode and another output port with TM polarization mode. The polarization diverse grating coupler is required to test multiple polarization sensitive photonics components and can be used with other single polarization grating coupler via a fiber array to perform wafer-level testing.

    Silicon photonics based fiber coupler

    公开(公告)号:US10788638B2

    公开(公告)日:2020-09-29

    申请号:US16245076

    申请日:2019-01-10

    Abstract: A silicon-based edge coupler for coupling a fiber with a waveguide includes a cantilever member being partially suspended with its anchored end coupled to a silicon photonics die in a first part of a silicon substrate and a free end terminated near an edge region separating a second part of the silicon substrate from the first part. The edge coupler further includes a mechanical stopper formed at the edge region with a gap distance ahead of the free end of the cantilever member. Additionally, a V-groove is formed in the second part of the silicon substrate characterized by a top opening and a bottom plane symmetrically connected by two sloped side walls along a fixed Si-crystallography angle. The V-groove is configured to support a fiber with an end facet being pushed against the mechanical stopper and a core center being aligned with the free end of the cantilever member.

    Package structure for photonic transceiving device

    公开(公告)号:US10605999B2

    公开(公告)日:2020-03-31

    申请号:US16579671

    申请日:2019-09-23

    Abstract: A photonic transceiver apparatus in QSFP package. The apparatus includes a case having a base member, two partial side members, and a lid member to provide a spatial volume with an opening at a back end of the base member. Additionally, the apparatus includes a PCB, installed inside the spatial volume over the base member having a pluggable electrical connector at the back end. Further, the apparatus includes multiple optical transmitting devices in mini-transmit-optical-sub-assembly package, each being mounted on a common support structure and having a laser output port in reversed orientation toward the back end. Furthermore, the apparatus includes a silicon photonics chip, including a fiber-to-silicon attachment module, mounted on the PCB and coupled to a modulation driver module and a trans-impedance amplifier module. Moreover, the apparatus includes a pair of optical input/output ports being back connected to the fiber-to-silicon attachment module.

    Optical equalizer for photonics system

    公开(公告)号:US10605991B2

    公开(公告)日:2020-03-31

    申请号:US16352636

    申请日:2019-03-13

    Abstract: The present disclosure provides an optical equalizer for photonics system in an electric-optical communication network. The optical equalizer includes an input port and an output port. Additionally, the optical equalizer includes a filter having a number of stages coupled to each other in a multi-stage series with an output terminal of any stage being coupled to an input terminal of an adjacent next stage while the input terminal of a first stage of the multi-stage series being coupled from the input port. Each stage includes a tap terminal configured to pass an optical power factored by a coefficient of multiplication from the corresponding input terminal of the stage to a tap-output path characterized by a corresponding phase delay. Furthermore, the optical equalizer includes a combiner configured to sum up the optical powers respectively from the number of tap-output paths of the multi-stage series to the output port.

    Package structure for photonic transceiving device

    公开(公告)号:US10466431B2

    公开(公告)日:2019-11-05

    申请号:US16352054

    申请日:2019-03-13

    Abstract: A photonic transceiver apparatus in QSFP package. The apparatus includes a case having a base member, two partial side members, and a lid member to provide a spatial volume with an opening at a back end of the base member. Additionally, the apparatus includes a PCB, installed inside the spatial volume over the base member having a pluggable electrical connector at the back end. Further, the apparatus includes multiple optical transmitting devices in mini-transmit-optical-sub-assembly package, each being mounted on a common support structure and having a laser output port in reversed orientation toward the back end. Furthermore, the apparatus includes a silicon photonics chip, including a fiber-to-silicon attachment module, mounted on the PCB and coupled to a modulation driver module and a trans-impedance amplifier module. Moreover, the apparatus includes a pair of optical input/output ports being back connected to the fiber-to-silicon attachment module.

    Integrated photo detector, method of making the same

    公开(公告)号:US10262983B2

    公开(公告)日:2019-04-16

    申请号:US15979046

    申请日:2018-05-14

    Inventor: Jie Lin Masaki Kato

    Abstract: An integrated photo detector with enhanced electrostatic discharge damage (ESD) protection. The integrated photo detector includes a first photodiode formed in the SOI substrate and associated with a first p-electrode and a first n-electrode. Additionally, the integrated photo detector includes a second photodiode formed in the SOI substrate associated with a second p-electrode and a second n-electrode forming a capacitance no larger than a few femto Faradays. Moreover, the integrated photo detector includes a first electrode and a second electrode disposed respectively on the SOI substrate. The first/second electrode is respectively connected to the first p/n-electrode via a first/second metallic layer patterned with a reduced width from the first/second electrode to the first p/n-electrode and connected to the second p/n-electrode via a first/second metallic wire to make a parallel coupling between the first photodiode and the second photodiode with an ESD threshold of about 100V.

    Temperature insensitive DEMUX/MUX in silicon photonics

    公开(公告)号:US09829640B2

    公开(公告)日:2017-11-28

    申请号:US15374967

    申请日:2016-12-09

    Inventor: Masaki Kato

    CPC classification number: G02B6/29398 G02B6/00 G02B6/29344 H04B10/40 H04J14/02

    Abstract: A temperature insensitive DEMUX/MUX device whose wavelength does not change by environment temperature is provided for WDM application. The temperature insensitive DEMUX/MUX device includes a waveguide-based delay-line-interferometer configured to receive an input light bearing multiplexed wavelengths and output a first output light bearing the same multiplexed wavelengths but with a shifted intensity peak position. The first output light is transmitted into a DEMUX device through a first free space coupler and a grating fiber or waveguide to be demultiplexed for forming a plurality of second output lights each bearing an individual wavelength. The DEMUX device includes a second free space coupler for refocusing each second output light to corresponding output channel. The shifted intensity peak position of the first output light is tunable to make each second output light free from any temperature-induced drift off corresponding output channel.

    Method for forming a self-aligned Mach-Zehnder interferometer

    公开(公告)号:US09696604B1

    公开(公告)日:2017-07-04

    申请号:US15261669

    申请日:2016-09-09

    Abstract: A method of forming a waveguide for a self-aligned Mach-Zehnder-Interferometer. The method includes forming a waveguide on a substrate and providing a first mask with a first opening exposing a first width and a pair of second widths towards opposite sides of the first width. Additionally, the method includes doping a first dopant of a first concentration through the first opening into a first thickness of the waveguide to form a first semiconducting phase thereof. The method includes providing a second mask with a second opening exposing part of the waveguide and doping a second dopant of a second concentration through the second opening into the part of the waveguide to form a second semiconductor phase thereof sharing a boundary with the first semiconducting phase to form a PN junction across the boundary. The boundary is allowed to vary with a margin of tolerance within the first width.

Patent Agency Ranking