摘要:
Technology for a target evolved node B (eNB) operable to facilitate handover is disclosed. The target eNB can receive a handover request message to hand over a user equipment (UE) from the source eNB to the target eNB. The handover request message can include an evolved packet system (EPS) bearer group identifier (ID) indicating an EPS group bearer of the source eNB and associated with the UE, a last UE indicator to indicate whether the UE is a last UE of the source eNB to use the EPS group bearer, and a downlink (DL) traffic indicator to indicate whether the DL traffic for the UE during handover is negligible. The target eNB can perform a handover procedure to establish a connection with the UE based on at least one of the EPS bearer group ID, the last UE indicator, or the DL traffic indicator included in the handover request message.
摘要:
In embodiments, apparatuses, methods, and storage media may be described for monitoring channel quality of a radio link between a secondary evolved NodeB (SeNB) and a user equipment (UE) in a wireless communication network configured for dual connectivity. In embodiments, the UE may generate one or more indications of a channel quality of the SeNB-UE radio link and forward the indication to the SeNB. Based on the indication, the UE may receive a radio resource control (RRC) message from a master eNB (MeNB) related to the SeNB-UE radio link. Other embodiments may be claimed.
摘要:
Systems and methods disclosed herein provide in-device co-existence interference avoidance for a wireless communication device in dual connectivity with a master node and a secondary node. Time-division multiplexing (TDM) assistance information sent by the wireless communication device is forwarded from the master node to the secondary node. The master node and/or the secondary node uses the TDM assistance information to determine a TDM solution for the in-device co-existence interference in the wireless communication device.
摘要:
In embodiments, apparatuses, methods, and storage media may be described for monitoring channel quality of a radio link between a secondary evolved NodeB (SeNB) and a user equipment (UE) in a wireless communication network configured for dual connectivity. In embodiments, the UE may generate one or more indications of a channel quality of the SeNB-UE radio link and forward the indication to the SeNB. Based on the indication, the UE may receive a radio resource control (RRC) message from a master eNB (MeNB) related to the SeNB-UE radio link. Other embodiments may be claimed.
摘要:
A base station can obtain channel quality conditions for mobile devices in a scheduling interval and identify a channel quality, a target transmission scheme, and a transmission power level for each of the mobile devices. The base station can assign a unique orthogonal CDMA code and can force the mobile devices to transmit K repeated bursts of uplink data such that each of the mobile devices has a rotated phase shift based on the unique orthogonal CDMA code assigned to each of the mobile devices with each of the mobile devices multiplexed on a same physical channel using an overlaid CDMA operation. The base station can process K repeated bursts that are multiplexed on the same physical channel using the overlaid CDMA operation. The base station can separate the mobile devices according to the unique orthogonal CDMA code and use IQ accumulation according to combine the K repeated bursts.
摘要:
Technology described herein provides systems and technologies that help avoid waste of wireless network resources due to frequent losses of wireless connectivity with energy-harvesting devices (EHDs). An energy-harvesting-indicator communication can be sent from a wireless device to a cellular base station to inform the cellular base station that the wireless device is an EHD. The cellular base station can preserve context information and/or DL data pertaining to a wireless connection with the EHD when a wireless connection is lost due to a temporarily low level of available energy at the EHD. The context information and/or DL data can be preserved by the cellular base station until the period of time elapsed exceeds a threshold time value. Upon receiving a connection-resumption communication from the EHD, the cellular base station can use preserved context information to restore the wireless connection and proceed to send preserved DL data to the EHD.
摘要:
Systems and methods provide a joint handover process wherein a user equipment (UE) and at least one secondary node remain connected to each other and are handed over together from a first master node to a second master node. Thus, a re-establishment procedure with the at least one secondary node is avoided.
摘要:
Systems and methods provide coordination between a 3GPP node and user equipment (UE) for coverage enhancement modes (OEM). At predetermined reference times, the node enters OEM and broadcasts dynamic OEM scheduling information. A UE with OEM capability may attempt to connect to the node at the predetermined reference times and other times indicated in the dynamic OEM scheduling information.