Abstract:
An electronic device receives depth sensor data that includes depths sensed in multiple zones in the field of view of a depth sensor. The device determines whether a user is in front of the device based on the depth sensor data. If the user is determined to be present, then the device causes a display to enter an operational mode. Otherwise, the device causes the display to enter a standby mode. The device may also determine whether the user's attention is on the device by determining whether the depth sensor data indicates that the user is facing the device. If so, the device causes the display to enter the operational mode. Otherwise, the device causes the display to enter a power saving mode. The device may use a machine learning algorithm to determine whether the depth sensor data indicates that the user is present and/or facing the device.
Abstract:
An electronic device receives depth sensor data that includes depths sensed in multiple zones in the field of view of a depth sensor. The device determines whether a user is in front of the device based on the depth sensor data. If the user is determined to be present, then the device causes a display to enter an operational mode. Otherwise, the device causes the display to enter a standby mode. The device may also determine whether the user's attention is on the device by determining whether the depth sensor data indicates that the user is facing the device. If so, the device causes the display to enter the operational mode. Otherwise, the device causes the display to enter a power saving mode. The device may use a machine learning algorithm to determine whether the depth sensor data indicates that the user is present and/or facing the device.
Abstract:
Various techniques for detecting are described herein. In one example, a method includes detecting a position of a computing device and selecting a plurality of microphones to detect audio data based on the position of the computing device. The method can also include calculating location data corresponding to the audio data, the location data indicating the location of a user and modifying a far field gain value based on the location data.
Abstract:
Apparatus, computer-readable storage medium, and method associated with orienting a display image are described. In embodiments, a computing device may include a display to render the display image and a display orientation module coupled with the display. In embodiments the display orientation module may receive audio input from a user of the computing device and determine a position of the user relative to the display, based on the audio input. In embodiments, the display orientation module may further either orient the display image in accordance with the position of the user or output a result of the determination for use to orient the display image in accordance with the position of the user. Other embodiments may be described and/or claimed.
Abstract:
Particular embodiments described herein provide for an electronic device that can include a main camera, at least one array of cameras, and a display to display an image captured by the main camera, wherein the image includes more than one region of interest and each region of interest is displayed in a separate picture in picture image on the display. A stream synchronization process module can capture the image and each separate picture in picture image as a separate video stream or as a single video stream.
Abstract:
Various techniques for adjusting settings based on sensor data are described herein. In one example, a method includes detecting sensor data from a sensor and ranking the sensor data based on predetermined zones. The method can also include identifying a dominant zone from the predetermined zones, and adjusting the setting based on the dominant zone.
Abstract:
The present disclosure is directed to an adaptable depth sensing (DS) system. A DS device may comprise a DS equipment module and a control module. The control module may configure the operational mode of the DS equipment module for close-range sensing, mid-range sensing or long-range sensing. The control module may receive at least depth data from the DS equipment module for determining the mode of operation. The control module may also receive condition data regarding the DS device and/or a host device to which the DS device is coupled, determine a configuration based on the condition data, and may utilize the condition data along with the depth data to configure the DS equipment module. Configuring the DS equipment module may comprise, for example, enabling components within the DS equipment module, configuring focus for the components, configuring image orientation for the components and/or selecting a DS methodology for the components.
Abstract:
Techniques related to a system, article, and method of determining object positions for image processing using wireless network angle of transmission.
Abstract:
Embodiments relate to mobile devices and systems having an operative component integrated into a first housing and a complementary component within an opening of a second housing moveably coupled to the first housing such that, in a particular configuration of the device or system, the operative component is aligned with the complementary component to enhance performance of the operative component.
Abstract:
Apparatus, computer-readable storage medium, and method associated with orienting a display image are described. In embodiments, a computing device may include a display to render the display image and a display orientation module coupled with the display. In embodiments the display orientation module may receive audio input from a user of the computing device and determine a position of the user relative to the display, based on the audio input. In embodiments, the display orientation module may further either orient the display image in accordance with the position of the user or output a result of the determination for use to orient the display image in accordance with the position of the user. Other embodiments may be described and/or claimed.