Abstract:
An apparatus is provided for autonomous security and functional safety (FUSA) of clock and voltages. The apparatus may include: a multiplexer having a first input communicatively coupled to a pin to receive a first clock external to a die, and a second input coupled to an output of a divider; an oscillator to provide a second clock; and a counter coupled to an output of the multiplexer and the oscillator, wherein the counter is to operate with the second clock and is to determine a frequency of the first clock. The apparatus may further include a voltage monitor circuitry for monitoring voltage(s) for FUSA, a reference generator for FUSA, a duty cycle monitor for FUSA, a frequency degradation monitor for FUSA, and a phase error degradation monitor for FUSA.
Abstract:
An apparatus is provided for autonomous security and functional safety (FUSA) of clock and voltages. The apparatus may include: a multiplexer having a first input communicatively coupled to a pin to receive a first clock external to a die, and a second input coupled to an output of a divider; an oscillator to provide a second clock; and a counter coupled to an output of the multiplexer and the oscillator, wherein the counter is to operate with the second clock and is to determine a frequency of the first clock. The apparatus may further include a voltage monitor circuitry for monitoring voltage(s) for FUSA, a reference generator for FUSA, a duty cycle monitor for FUSA, a frequency degradation monitor for FUSA, and a phase error degradation monitor for FUSA.
Abstract:
In some embodiments, a tight loop mode is provided in which most, if not all of, the clock distribution circuitry may be bypassed during an initial frequency lock stage.
Abstract:
An apparatus is provided for autonomous security and functional safety (FUSA) of clock and voltages. The apparatus may include: a multiplexer having a first input communicatively coupled to a pin to receive a first clock external to a die, and a second input coupled to an output of a divider; an oscillator to provide a second clock; and a counter coupled to an output of the multiplexer and the oscillator, wherein the counter is to operate with the second clock and is to determine a frequency of the first clock. The apparatus may further include a voltage monitor circuitry for monitoring voltage(s) for FUSA, a reference generator for FUSA, a duty cycle monitor for FUSA, a frequency degradation monitor for FUSA, and a phase error degradation monitor for FUSA.
Abstract:
An apparatus is provided for autonomous security and functional safety (FUSA) of clock and voltages. The apparatus may include: a multiplexer having a first input communicatively coupled to a pin to receive a first clock external to a die, and a second input coupled to an output of a divider; an oscillator to provide a second clock; and a counter coupled to an output of the multiplexer and the oscillator, wherein the counter is to operate with the second clock and is to determine a frequency of the first clock. The apparatus may further include a voltage monitor circuitry for monitoring voltage(s) for FUSA, a reference generator for FUSA, a duty cycle monitor for FUSA, a frequency degradation monitor for FUSA, and a phase error degradation monitor for FUSA.
Abstract:
In some embodiments, a tight loop mode is provided is which most, if not all of, the clock distribution circuitry may be bypassed during an initial frequency lock stage.
Abstract:
Described herein are apparatus, method, and system for re-synthesizing a clock signal. The apparatus comprises: a first logic unit to detect a rising edge of an input clock signal and for generating a rising edge of an output clock signal based on the detected rising edge of the input clock signal, the input clock signal having a non-50% duty cycle and a first period; and a second logic unit to compute a falling edge of the output clock signal according to the detected rising edge of the input clock signal, the falling edge of the output clock signal being near half of the first period.
Abstract:
In some embodiments, a tight loop mode is provided in which most, if not all of, the clock distribution circuitry may be bypassed during an initial frequency lock stage.
Abstract:
In some embodiments, a tight loop mode is provided is which most, if not all of, the clock distribution circuitry may be bypassed during an initial frequency lock stage.
Abstract:
Described herein are apparatus, method, and system for re-synthesizing a clock signal. The apparatus comprises: a first logic unit to detect a rising edge of an input clock signal and for generating a rising edge of an output clock signal based on the detected rising edge of the input clock signal, the input clock signal having a non-50% duty cycle and a first period; and a second logic unit to compute a falling edge of the output clock signal according to the detected rising edge of the input clock signal, the falling edge of the output clock signal being near half of the first period.