Abstract:
Systems, methods, and apparatuses to perform an operation receiving, by a first workload manager in a first middleware environment, state information for a plurality of applications executing in a second middleware environment defining, by the first workload manager based on the received state information, a first routing rule in the first middleware environment, and, based on the first routing rule: identifying, by a first application of a plurality of applications executing in the first middleware environment, a second application of the plurality of applications executing in the second middleware environment, and forwarding, by the first application of the plurality of applications executing in the first middleware environment, a first workload to the second application of the plurality of applications executing in the second middleware environment.
Abstract:
A method includes reading, by a capture engine, log data. The log data can be synchronously hardware-replicated. The log data reflects that an update was started for a database of a first site. The capture engine corresponds to a capture engine of a second site. The method also includes identifying, by the capture engine, the update. The method also includes determining whether the update was committed to the database of the first site. The method also includes replicating, by an apply engine, the update to a database of the second site based on the determining. The update is replicated to the database of the second site based on a determination that the update was committed to the database of the first site. The committed update corresponds to a consistent replication of updates across two or more databases that reside in multiple database management systems.
Abstract:
Embodiments include a method, system, and computer program product for maintaining continuous availability. An embodiment of the present invention includes receiving a unit of work data. The unit of work data is distributed among the plurality of workloads using either an active/standby configuration, an active/query configuration, an active/partitioned configuration, or an active/active configuration. A primary workload is selected from a plurality of workloads to process the unit of work data based on a workload distribution rule. It is determined if the primary workload is capable of processing the unit of work data based on user configurable settings. If the primary site is capable of processing the unit of work data then the unit of work data is transmitted to the primary workload. Otherwise the unit of work data is transmitted to a secondary workload. The unit of work data is replicated between the primary workload and the secondary workload.
Abstract:
Aspects of the disclosure relate to managing migration of one or more applications from a primary computing device to recovery computing devices using a controller. Resource data that includes application resource requirements and resource capacities is monitored. An application exists as a single instance on the primary computing device. A recovery cluster for the application consisting of recovery computing devices is determined. A division of the application into a plurality of application instances is identified. In response to the resource data being updated, a new recovery cluster is determined. In response to the new recovery cluster, a new plurality of application instances is identified. Once a triggering event on the primary computing device is detected, the controller migrates the new application instances to the new recovery cluster. Other uses of the disclosure are possible.
Abstract:
Embodiments of the disclosure are directed to methods, systems and computer program products for performing a planned workload switch. A method includes receiving a request to switch a site of an active workload and stopping one or more long running processes from submitting a new request to the active workload. The method also includes preventing a new network connection from accessing the active workload and processing one or more transactions in a queue of the active workload for a time period. Based on a determination that the queue of the active workload is not empty after the time period, the method includes aborting all remaining transactions in the queue of the active workload. The method further includes replicating all remaining committed units of work to a standby workload associated with the active workload.
Abstract:
A system for maintaining a two-site configuration for continuous availability over long distances may include a first computing site configured to execute a first instance associated with a priority workload, the first instance being designated as an active instance; a second computing site configured to execute a second instance of the priority workload, the second instance being designated as a standby instance; a software replication module configured to replicate a unit of work data associated with the priority workload from a first data object associated with the active instance to a second data object associated with the standby instance, and a hardware replication module configured to replicate an image from a first storage volume to a copy on a second storage volume, wherein the first storage volume is associated with the first computing site, and the second storage volume is associated with a third computing site.
Abstract:
A system for providing reliable availability of a general workload and continuous availability of a priority workload over long distances may include a first computing site configured to execute a first instance associated with the priority workload, wherein the first instance is designated as an active instance, a second computing site configured to execute a second instance of the priority workload, wherein the second instance is designated as a standby instance, a third computing site configured to restart a third instance associated with the general workload, and a workload availability module configured to synchronize a portion of data associated with the third instance with a corresponding portion of data associated with the second instance.
Abstract:
A system for providing reliable availability of a general workload and continuous availability of a priority workload over long distances may include a first computing site configured to execute a first instance associated with the priority workload, wherein the first instance is designated as an active instance, a second computing site configured to execute a second instance of the priority workload, wherein the second instance is designated as a standby instance, a third computing site configured to restart a third instance associated with the general workload, and a workload availability module configured to synchronize a portion of data associated with the third instance with a corresponding portion of data associated with the second instance.
Abstract:
A method for managing a plurality of workloads executing on both a primary system and on a secondary system, and synchronizing both a plurality of software data and a plurality of hardware data stored on the primary system with the secondary system is provided. The method may include receiving a region switch request and stopping the execution of the plurality of workloads on the primary system; suspending the replication of the plurality of software and hardware data stored on the primary system with the plurality of software and hardware data stored on the secondary system; and switching the replication of the plurality of software data and the plurality of hardware data that occurs from the primary system to the secondary system to occur from the secondary system to the primary system. The method may further include activating the execution of and synchronizing the plurality of workloads on the secondary system.
Abstract:
A system for maintaining a two-site configuration for continuous availability over long distances may include a first computing site configured to execute a first instance associated with a priority workload, the first instance being designated as an active instance; a second computing site configured to execute a second instance of the priority workload, the second instance being designated as a standby instance; a software replication module configured to replicate a unit of work data associated with the priority workload from a first data object associated with the active instance to a second data object associated with the standby instance, and a hardware replication module configured to replicate an image from a first storage volume to a copy on a second storage volume, wherein the first storage volume is associated with the first computing site, and the second storage volume is associated with a third computing site.