Abstract:
A semiconductor device structure and method for fabricating the same. The semiconductor device structure includes a first vertical transport field effect transistor (VTFET) comprising at least a first gate structure having a first gate length, and a second VTFET stacked on the first VTFET and comprising at least a second gate structure having a second gate length that is less than the first gate length. The method includes forming, on a substrate, a first VTFET including at least a first gate structure having a first gate length. The method further includes forming a second VTFET stacked on the first VTFET and including at least a second gate structure having a second gate length that is less than the first gate length.
Abstract:
Disclosed is a novel system and method to form local interconnects in a continuity test structure. The method begins with a first set of transistor gate lines and a second set of transistor gate lines are formed. Next, a first group of two or more local interconnect lines landing on transistor gates and formed substantially perpendicular to the first set of transistor gate lines and electrically coupled therewith is formed using a first lithography pass. A second group of two or more local interconnect lines landing and formed substantially perpendicular to the second set of transistor gate lines and electrically coupled therewith is formed during second lithography pass. For some technologies, a third set of transistor gate lines is formed along with a third group using a third lithography pass.
Abstract:
Various embodiments form strained and relaxed silicon and silicon germanium fins on a semiconductor wafer. In one embodiment a semiconductor wafer is formed. The semiconductor wafer comprises a substrate, a dielectric layer, and a strained silicon germanium (SiGe) layer. At least one region of the strained SiGe layer is transformed into a relaxed SiGe region. At least one strained SiGe fin is formed from a first strained SiGe region of the strained SiGe layer. At least one relaxed SiGe fin is formed from a first portion of the relaxed SiGe region. Relaxed silicon is epitaxially grown on a second strained SiGe region of the strained SiGe layer. Strained silicon is epitaxially grown on a second portion of the relaxed SiGe region. At least one relaxed silicon fin is formed from the relaxed silicon. At least one strained silicon fin is formed from the strained silicon.
Abstract:
A FinFET structure is formed by forming a hardmask layer on a substrate including a silicon-containing layer on an insulating layer. The hardmask layer includes first, second and third layers on the silicon-containing layer. An array of fins is formed from the hardmask layer and the silicon-containing layer. A gate is formed covering a portion but not all of a length of each of the array of fins. The portion covers each of the fins in the array. The gate defines source/drain regions on either side of the gate. A spacer is formed on each side of the gate, the forming of the spacer performed to remove the third layer from portions of the fins in the source/drain regions. The second layer of the hardmask layer is removed from the portions of the fins in the source/drain regions, and the fins in the source/drain regions are merged.
Abstract:
A semiconductor device structure and method for fabricating the same. The semiconductor device structure includes a first vertical transport field effect transistor (VTFET) comprising a first semiconductor fin and a second VTFET stacked on the first VTFET. The second VTFET includes a second semiconductor fin that is separate and distinct from the first semiconductor fin. At least one insulating layer is disposed on a top surface of the first VTFET. The second VTFET is disposed on the at least one insulating layer. The method includes forming a first vertical VTFET on a first substrate and bonding a second substrate to and on top of the first VTFET. A second VTFET is formed on the second substrate.
Abstract:
A semiconductor structure and a method for fabricating the same. The semiconductor structure includes a substrate and a bonding layer in contact with a top surface of the substrate. At least one transistor contacts the bonding layer. The transistor includes at least one gate structure disposed on and in contact with a bottom surface of a semiconductor layer of the transistor. The semiconductor further includes a capacitor disposed adjacent to the transistor. The capacitor contacts the semiconductor layer of the transistor and extends down into the substrate. The method includes forming at least one transistor and then flipping the transistor. After the transistor has been flipped, the transistor is bonded to a new substrate. An initial substrate of the transistor is removed to expose a semiconductor layer. A capacitor is formed adjacent to the transistor and contacts with the semiconductor layer. A contact node is formed adjacent to the capacitor.
Abstract:
Various embodiments form silicon and silicon germanium fins on a semiconductor wafer. In one embodiment a semiconductor wafer is obtained. The semiconductor wafer comprises a substrate, a dielectric layer, and a semiconductor layer including silicon germanium (SiGe). At least one SiGe fin is formed from at least a first SiGe region of the semiconductor layer in at least one PFET region of the semiconductor wafer. Strained silicon is epitaxially grown on at least a second SiGe region of the semiconductor layer. At least one strained silicon fin is formed from the strained silicon in at least one NFET region of the semiconductor wafer.
Abstract:
A process fabricates a fin field-effect-transistor by implanting a dopant into an exposed portion of a semiconductor substrate within a cavity. The cavity is formed in a dielectric layer on the semiconductor substrate. The cavity exposes the portion of the semiconductor substrate within the cavity. A semiconductor layer is epitaxially grown within the cavity atop the dopant implanted exposed portion of the semiconductor substrate. A height of the cavity defines a height of the epitaxially grown semiconductor.
Abstract:
A stacked semiconductor device structure and method for fabricating the same. The stacked semiconductor device structure includes a first vertical transport field effect transistor (VTFET) and a second VTFET stacked on the first VTFET. The structure further includes at least one power line and at least one ground line disposed within a backside of the stacked semiconductor structure. The method includes at least orientating a structure including a first VTFET and a second VTFET stacked on the first VTFET such that a multi-layer substrate, on which the first VTFET is formed, is above the first and second VTFETs. First and second contact trenches are formed through at least one layer of the multi-layer substrate. The first contact trench exposes a portion of a metal contact and the second contact trench exposes a portion of a source/drain region. The first and second contact trenches are filled with a contact material.
Abstract:
A semiconductor structure and a method for fabricating the same. The semiconductor structure includes a substrate and a bonding layer in contact with a top surface of the substrate. At least one transistor contacts the bonding layer. The transistor includes at least one gate structure disposed on and in contact with a bottom surface of a semiconductor layer of the transistor. The semiconductor further includes a capacitor disposed adjacent to the transistor. The capacitor contacts the semiconductor layer of the transistor and extends down into the substrate. The method includes forming at least one transistor and then flipping the transistor. After the transistor has been flipped, the transistor is bonded to a new substrate. An initial substrate of the transistor is removed to expose a semiconductor layer. A capacitor is formed adjacent to the transistor and contacts with the semiconductor layer. A contact node is formed adjacent to the capacitor.