Abstract:
A method of preventing corner rounding for an alternate channel FINFET formed in trenches and the resulting devices are provided. Embodiments include providing a Si substrate; forming a trench in the Si substrate; forming a Si based layer with a flat upper surface in the trench; and forming a SiGe layer over the Si based layer.
Abstract:
Various embodiments form strained and relaxed silicon and silicon germanium fins on a semiconductor wafer. In one embodiment a semiconductor wafer is formed. The semiconductor wafer comprises a substrate, a dielectric layer, and a strained silicon germanium (SiGe) layer. At least one region of the strained SiGe layer is transformed into a relaxed SiGe region. At least one strained SiGe fin is formed from a first strained SiGe region of the strained SiGe layer. At least one relaxed SiGe fin is formed from a first portion of the relaxed SiGe region. Relaxed silicon is epitaxially grown on a second strained SiGe region of the strained SiGe layer. Strained silicon is epitaxially grown on a second portion of the relaxed SiGe region. At least one relaxed silicon fin is formed from the relaxed silicon. At least one strained silicon fin is formed from the strained silicon.
Abstract:
A method of making a structurally stable SiGe-on-insulator FinFET employs a silicon nitride liner to prevent de-stabilizing oxidation at the base of a SiGe fin. The silicon nitride liner blocks access of oxygen to the lower corners of the fin to facilitate fabrication of a high-concentration SiGe fin. The silicon nitride liner is effective as an oxide barrier even if its thickness is less than about 5 nm. Use of the SiN liner provides structural stability for fins that have higher germanium content, in the range of 25-55% germanium concentration.
Abstract:
Various embodiments form strained and relaxed silicon and silicon germanium fins on a semiconductor wafer. In one embodiment a semiconductor wafer is formed. The semiconductor wafer comprises a substrate, a dielectric layer, and a strained silicon germanium (SiGe) layer. At least one region of the strained SiGe layer is transformed into a relaxed SiGe region. At least one strained SiGe fin is formed from a first strained SiGe region of the strained SiGe layer. At least one relaxed SiGe fin is formed from a first portion of the relaxed SiGe region. Relaxed silicon is epitaxially grown on a second strained SiGe region of the strained SiGe layer. Strained silicon is epitaxially grown on a second portion of the relaxed SiGe region. At least one relaxed silicon fin is formed from the relaxed silicon. At least one strained silicon fin is formed from the strained silicon.
Abstract:
An integrated circuit, including: a UTBOX layer; a first cell, including: FDSOI transistors; a first STI separating the transistors; a first ground plane located beneath one of the transistors and beneath the UTBOX layer; a first well; a second cell, including: FDSOI transistors; a second STI separating the transistors; a second ground plane located beneath one of the transistors and beneath the UTBOX layer; a second well; a third STI separating the cells, reaching the bottom of the first and second wells; a deep well extending continuously beneath the first and second wells, having a portion beneath the third STI whose doping density is at least 50% higher than the doping density of the deep well beneath the first and second STIs.
Abstract:
An integrated circuit, including: a first cell, including: FDSOI transistors; a UTBOX layer lying beneath the transistors; a first well lying beneath the insulator layer and beneath the transistors, the first well having a first type of doping; a first ground plane having a second type of doping, located beneath one of the transistors and between the insulator layer and the first well; a first STI separating the transistors and crossing the insulator layer; a first conductive element forming an electrical connection between the first well and the first ground plane, located under the first STI; a second cell including a second well; a second STI separating the cells, crossing the insulator layer and reaching the bottom of the first and second wells.
Abstract:
An circuit supporting substrate includes a transistor and a capacitor. The transistor includes a first semiconductor layer and a gate stack located on the first semiconductor layer. The gate stack includes a metal layer and a first high-k dielectric layer. A gate spacer is located on sidewalls of the gate stack. The first high-k dielectric layer is located between the first semiconductor layer and the metal layer and between the gate spacer and sidewalls of the metal layer. A first silicide region is located on a first source/drain region. A second silicide region is located on a second source/drain region. The capacitor includes a first terminal that comprises a third silicide region located on a portion of the second semiconductor. A second high-k dielectric layer is located on the silicide region. A second terminal comprises a metal layer that is located on the second high-k dielectric layer.
Abstract:
A transistor region of a first semiconductor layer and a capacitor region in the first semiconductor layer are isolated. A dummy gate structure is formed on the first semiconductor layer in the transistor region. A second semiconductor layer is formed on the first semiconductor layer. First and second portions of the second semiconductor layer are located in the transistor region, and a third portion of the second semiconductor layer is located in the capacitor region. First, second, and third silicide regions are formed on the first, second, and third portions of the second semiconductor layer, respectively. After forming a dielectric layer, the dummy gate structure is removed forming a first cavity. At least a portion of the dielectric layer located above the third silicide region is removed forming a second cavity. A gate dielectric is formed in the first cavity and a capacitor dielectric in the second cavity.