摘要:
A chair is equipped with a leg column 1, a seat 3, and a back support 4. An intermediate supporting member 9 is fitted to an upper end of the leg column 1, the seat 3 and a back frame 5 are fitted to the intermediate supporting member 9, and the back support 4 is fitted to an upper end of the back frame 5 via a joint unit 11. The seat 3 has an elongated shape when viewed from the top, and is fitted to the intermediate supporting member 9 to swivel horizontally. The back support 4 can be turned freely around a first axis 13 and also can be turned freely around a second axis 12. Since the seat 3 and the back support 4 can be changed into various modes, a using mode of the chair can be changed variously.
摘要:
A magnetic head includes a medium facing surface, a main pole, a trailing shield, a spin torque oscillator, and a first insulating layer. The first insulating layer is interposed between a portion of the main pole and a portion of the spin torque oscillator. The first insulating layer has a first end closest to the medium facing surface. The spin torque oscillator has a rear end farthest from the medium facing surface. The first end of the first insulating layer is located closer to the medium facing surface than the rear end of the spin torque oscillator is.
摘要:
A plasmon generator including a wide portion and a narrow portion is manufactured by etching an initial plasmon generator using an etching mask. The etching mask includes a first mask layer for defining the shape of one of the narrow portion and the wide portion, and a second mask layer for defining the shape of the other of the narrow portion and the wide portion. The etching mask is formed by forming a first hard mask, a second initial mask layer and a second hard mask in this order on a first initial mask layer, and etching the first and second initial mask layers by using the first and second hard masks.
摘要:
A main pole has a front end face including a first end face portion and a second end face portion. A plasmon generator has a near-field light generating surface. A surrounding layer has a first surrounding layer end face and a second surrounding layer end face located on opposite sides of the first end face portion in the track width direction. A gap film has a first gap film end face and a second gap film end face located on opposite sides of the near-field light generating surface in the track width direction. Each of the first and second gap film end faces includes a portion located between the first and second surrounding layer end faces, but does not include any portion interposed between the first surrounding layer end face and the first end face portion or between the second surrounding layer end face and the first end face portion.
摘要:
A thermally-assisted magnetic recording head includes a main pole, a waveguide, and a plasmon generator. The waveguide includes a core and a cladding. The main pole and the core are located on the same side in the direction of travel of a recording medium relative to the plasmon generator. The main pole has a first end face located in the medium facing surface, and a second end face opposite to the first end face. The core has a front end face opposed to the second end face of the main pole. The cladding includes an interposition section interposed between the front end face of the core and the second end face of the main pole. The front end face of the core and the second end face of the main pole are inclined with respect to the medium facing surface.
摘要:
A main pole includes a main body and a lower protrusion. The lower protrusion is located at a distance from a medium facing surface. The main body includes a front portion and a rear portion. The front portion has a first side surface and a second side surface. The lower protrusion has a third side surface and a fourth side surface. A first side shield has a first sidewall opposed to the first side surface. A second side shield has a second sidewall opposed to the second side surface. A bottom shield includes a receiving section. The receiving section has a third sidewall opposed to the third side surface, and a fourth sidewall opposed to the fourth side surface. The receiving section and the lower protrusion are formed in a self-aligned manner by using the first and second side shields.
摘要:
A magnetic head includes a main pole, an expansion member, and a heater. The main pole has an end face located in a medium facing surface. The expansion member is located farther from the medium facing surface than is the main pole and adjacent to the main pole in a direction perpendicular to the medium facing surface. The heater heats the expansion member. The expansion member has a linear expansion coefficient higher than that of the main pole.
摘要:
A return path section includes first and second yoke portions and first, second and third columnar portions. The first and second yoke portions and the first columnar portion are located on the front side in the direction of travel of a recording medium relative to a waveguide core. The second and third columnar portions are located on opposite sides of a plasmon generator and connected to a shield. The first yoke portion connects a main pole to the first columnar portion. The second yoke portion connects the first columnar portion to the second and third columnar portions. A coil is wound around the first columnar portion. A heater and an expansion layer are located on the rear side in the direction of travel of the recording medium relative to the core.
摘要:
A thermally-assisted magnetic recording head includes a main pole and a heat sink. The heat sink includes two first portions and two second portions. The two first portions are located on opposite sides of the main pole in the track width direction and are each spaced from the main pole. The two second portions are located between the main pole and the two first portions. The main pole and the two first portions are each formed of a magnetic metal. The two second portions are formed of a nonmagnetic metal.
摘要:
A diffraction aberration corrector formed by the multipole of the solenoid coil ring and having a function of adjusting the degree of orthogonality or axial shift of the vector potential with respect to the beam axis. In order to cause a phase difference, the diffraction aberration corrector that induces a vector potential, which is perpendicular to the beam axis and has a symmetrical distribution within the orthogonal plane with respect to the beam axis, is provided near the objective aperture and the objective lens. A diffracted wave traveling in a state of being inclined from the beam axis passes through the ring of the magnetic flux. Since the phase difference within the beam diameter is increased by the Aharonov-Bohm effect due to the vector potential, the intensity of the electron beam on the sample is suppressed.