摘要:
There is provided an illumination system. the illumination system includes (a) a source of light having a wavelength of less than or equal to 193 nm, and (b) an optical element in a path of the light, having a first raster element, a second raster element, a third raster element and a fourth raster element situated thereon. The second raster element is adjacent to the first raster element, and located a first distance from the first raster element. The fourth raster element is adjacent to the third raster element, and located a second distance from the third raster element. The second distance is different from the first distance.
摘要:
There is provided an illumination system for scannertype microlithography along a scanning direction with a light source emitting a wavelength ≦193 nm. The illumination system includes a plurality of raster elements. The plurality of raster elements is imaged into an image plane of the illumination system to produce a plurality of images being partially superimposed on a field in the image plane. The field defines a non-rectangular intensity profile in the scanning direction.
摘要:
The invention concerns an illumination system, particularly for microlithography with wavelengths ≦193 nm, comprising a light source, a first optical component, a second optical component, an image plane and an exit pupil. The first optical component transforms the light source into a plurality of secondary light sources being imaged by the second optical component in said exit pupil. The first optical component comprises a first optical element having a plurality of first raster elements, which are imaged into said image plane producing a plurality of images being superimposed at least partially on a field in said image plane. The first raster elements deflect incoming ray bundles with first deflection angles, wherein at least two of the first deflection angles are different. The first raster elements are preferably rectangular, wherein the field is a segment of an annulus. To transform the rectangular images of the first raster elements into the segment of the annulus, the second optical component comprises a first field mirror for shaping the field to the segment of the annulus.
摘要:
A projection exposure apparatus for microlithography using a wavelength≦193 nm, includes (A) a primary light source, (B) an illumination system having (1) an image plane, (2) a plurality of raster elements for receiving light from the primary light source, and (3) a field mirror for receiving the light from the plurality of raster elements and for forming an arc-shaped field having a plurality of field points in the image plane, and (C) a projection objective. The illumination system has a principle ray associated with each of the plurality of field points thus defining a plurality of principle rays. The plurality of principle rays run divergently into the projection objective.
摘要:
The invention concerns an illumination system for wavelengths ≦193 nm, particularly for EUV lithography, with at least one light source, which has an illumination A in a predetermined surface; at least one device for producing secondary light sources; at least one mirror or lens device comprising at least one mirror or one lens, which is or are organized into raster elements; one or more optical elements, which are arranged between the mirror or lens device comprising at least one mirror or one lens, which is or are organized into raster elements and the reticle plane, whereby the optical elements image the secondary light sources in the exit pupil of the illumination system. The illumination system is characterized by the fact that the raster elements of the one or more mirror or lenses are shaped and arranged in such a way that the images of the raster elements cover by means of the optical elements the major portion of the reticle plane and that the exit pupil defined by aperture and filling degree is illuminated.
摘要:
There is provided a multi-mirror system for an illumination system with wavelengths ≦193 nm. The multi-mirror system includes (a) an imaging system having a first mirror and a second mirror, (b) an object plane, (c) an image plane in which the imaging system forms an image of an object, and (d) an arc-shaped field in the image plane, where a radial direction in a middle of the arc-shaped field defines a scanning direction. The first and second mirrors are arranged such that an edge sharpness of the arc-shaped field is smaller than 5 mm in the scanning direction. Rays traveling from the object plane to the image plane impinge a used area of the first and second mirrors with incidence angles relative to a surface normal of the mirrors ≦30° or ≧60°.
摘要:
There is provided a multi-mirror-system for an illumination system, especially for lithography with wavelengths ≦193 nm. The system includes light rays traveling along a light oath from an object plane to an image plane, and an arc-shaped field in the image plane, whereby a radial direction in the middle of the arc-shaped field defines a scanning direction. The first mirror and the second mirror are arranged in the light path in such a position and having such a shape, that the edge sharpness of the arc-shaped field in the image plane is smaller than 5 mm in the scanning direction. Furthermore, the light rays are impinging on the first mirror and the second mirror with incidence angles ≦30° or ≧60° relative to a surface normal of the first and second mirror.
摘要:
A REMA objective is realized by introduction of a few (1 to 5 units) aspherical surfaces of high-quality correction with a low number of lenses (no more than 10), and low path in glass (maximum 25% to 30%) of the object-reticle distance, thus enhancing efficiency.
摘要:
This invention relates to an Ilumination system for scanning lithography especially for wavelengths≦193 nm, particularly EUV lithography, for the illumination of a slit, comprising at least one field mirror or at least one field lens and being characterized in that at least one of the field mirror(s) or the field lens(es) has (have) an aspheric shape.
摘要:
There is provided an illumination system. The illumination system includes a first light source and a second light source, each of which are for providing light having a wavelength ≦193 nm, and an optical element. The first light source illuminates a first area of the optical element and the second light source illuminates a second area of the optical element.