Abstract:
An organic EL display panel with improved visibility is disclosed which includes sub-pixels each emitting light of a color selected from R, G, and B and disposed in a matrix, pixel electrodes disposed above a substrate in the matrix corresponding to the sub-pixels, and column banks row-directionally arranged extending in the column direction. The organic EL display panel further includes pairs of auxiliary column banks extending parallel to the main column banks, disposed in gaps between pairs of the column banks adjacent to each other where the pixel electrodes corresponding to the sub-pixels emitting the B color are present, each pair of the auxiliary column banks covering both edges in the row direction of each of the pixel electrodes therebetween.
Abstract:
An electronic device includes a substrate, a first conductive layer disposed over the substrate, an organic insulating layer, including an organic material, disposed over the first conductive layer and having an aperture exposing a portion of the first conductive layer, a second conductive layer, which is metallic, covering a top face of the organic insulating layer, an inner circumferential face that faces the aperture in the organic insulating layer, and the exposed portion of the first conductive layer, and an intermediate layer that includes an oxide or a nitride, disposed only between the second conductive layer and the inner circumferential face that faces the aperture in the organic insulating layer. The first conductive layer and the second conductive layer are in contact at the bottom face of the aperture in the organic insulating layer.
Abstract:
An organic display panel having a high luminance, and including an organic light emitting element that includes a bottom electrode, a hole-injection layer, an organic light emitting layer, and a top electrode layered in the stated order on a substrate. The bottom electrode is composed of a material that is aluminum, silver, or an alloy including at least one of aluminum and silver. The hole-injection layer contains an oxide of a transition metal. The organic light emitting element further includes a mixed oxidized thin film interposed between and in contact with the bottom electrode and the hole-injection layer, the mixed oxidized thin film being composed of an oxidized mixture of the same material as the material in the bottom electrode and the same transition metal as the transition metal in the hole-injection layer.
Abstract:
An organic EL display panel manufacturing method including: preparing a substrate; forming at least first electrodes on the substrate; forming, by performing photolithography on the substrate having the first electrodes, a bank layer made of a photoresist and having apertures corresponding one-to-one with the first electrodes; forming a functional layer in each of the apertures by applying an ink containing a functional material to the aperture and drying the applied ink; and forming at least a second electrode on the functional layer. The forming of the bank layer includes: applying the photoresist to the substrate having the first electrodes; forming apertures corresponding one-to-one with the first electrodes in the photoresist by performing exposure using a mask and then developing the photoresist; after forming the apertures, performing exposure of the photoresist having the apertures; after performing the exposure of the photoresist having the apertures, baking the photoresist.
Abstract:
An organic EL display panel including: a substrate; banks linearly extending along one direction above the substrate; pixel electrodes spaced away from one another along the one direction, in each of first and second spaces among spaces defined by the banks; a light-emitting layer covering each pixel electrode in each of the first and second spaces; and a sub-bank crossing the one direction at least in the first space, and when defining each light-emitting layer portion covering a pixel electrode as a light-emitting portion and defining each area between light-emitting portions adjacent in the one direction as a non-light-emitting portion, a positive integer N exists for which the following holds true: among Nth non-light-emitting portions counting from one side along the one direction, the Nth non-light-emitting portion in the first space has the sub-bank and the Nth non-light-emitting portion in the second space does not have the sub-bank.
Abstract:
An organic electroluminescence (EL) display panel includes pixels arranged in a matrix of rows and columns, and includes: a substrate; pixel electrode layers that are arranged on the substrate in the matrix; an insulating layer that is provided above the substrate and the pixel electrode layers, and has elongated openings and a grooved portion for each of the pixels, the openings extending in a column direction and being arranged in a row direction, the grooved portion having an upper opening and a bottom and being communicated with at least one of the openings in plan view; organic functional layers that are provided above the pixel electrode layers, and include light emitting layers in which organic electroluminescence occurs in the openings; and a light-transmissive counter electrode layer that is provided above the organic functional layers. Cross-sectional profiles of the openings taken along the row direction are uniform in the column direction.
Abstract:
A display device including: a lead wiring layer pattern 207, made from metal, that extends outside a light emission region on a substrate; a passivation layer 216 covering the lead wiring layer pattern, a contact hole 216a in the passivation layer outside the light emission region; a connecting wiring layer pattern 237 that is continuous across the passivation layer, an inner circumference of the contact hole, and the lead wiring layer pattern in the contact hole; an electrically-conductive sealing layer pattern 217 on the connecting wiring layer pattern, covering a portion of the connecting wiring layer pattern in the contact hole; an electrically-conductive upper sealing layer pattern 219 covering and in contact with a portion of the sealing layer pattern; and a contact prevention layer pattern 218, 236 between the electrically-conductive upper sealing layer pattern and a periphery of the sealing layer pattern.
Abstract:
A display device including: a lead wiring layer pattern 207, made from metal, that extends outside a region 10A on a substrate in which a light-emitter is present; a passivation layer 216; a contact hole 216a in the passivation layer 216 outside the region 10A in a position over the lead wiring layer pattern 207 in plan view; a connecting wiring layer pattern 237 that is continuous across the passivation layer 216, an inner circumference of the contact hole 216a, and the lead wiring layer pattern 207 in the contact hole 216a; a sealing layer 217 covering a portion of the connecting wiring layer pattern 237 in the contact hole 216a; and an upper sealing layer pattern 219 covering the sealing layer pattern 217 that is above the connecting wiring layer pattern 237.
Abstract:
An organic light-emitting device including a substrate, first electrodes, first banks extending in a first direction, second banks extending in a second direction, organic functional layers each including an organic light-emitting layer, and a second electrode. The second banks include an organic fluorine compound, and have portions intersecting with and disposed above the first banks. Each of the first banks includes an organic bank layer including an organic material and an inorganic bank layer disposed on the organic bank layer. For each of the first banks, an uppermost surface thereof is a surface of the inorganic bank layer included therein.
Abstract:
A light-emission device includes a substrate and a G light-emission layer; an R light-emission layer, a B light-emission layer, and a wiring layer made of metal that are each arranged above the substrate. Each of the G light-emission layer, the R light-emission layer, and the B light-emission layer contains light-emission material. An amount of heat that the B light-emission layer generates upon light emission is greater than an amount of heat that the G light-emission layer generates upon light emission. Further, the B light-emission layer directly faces the wiring layer at a facing edge portion.