Abstract:
A polymer composition includes a conjugated diene polymer (A) and a compound (B). The compound (B) is at least one compound selected from the group consisting of a polysiloxane compound and a fluorine-containing compound. The conjugated diene polymer (A) contains, when the composition ratios (molar ratios) in the polymer of the structural units represented by formulas (1) to (4) are p, q, r, and s, respectively, a polymer (A-1) satisfying formula (i). 0.75≤(p+(0.5×r))/(p+q+(0.5×r)+s)≤0.95 Formula (i):
Abstract:
There is provided a polymer composition using which a molded product having excellent balance between rigidity, wear resistance, viscoelastic properties, and heat resistance can be obtained. A polymer composition according to the disclosure includes (A) a conjugated diene rubber (where, a polymer corresponding to the following component (B) is excluded); and (B) a hydrogenated product of a polymer that satisfies the following (1) to (3), which is a polymer in which 80% or more of structural units derived from butadiene are hydrogenated: (1) being a copolymer of a conjugated diene compound containing butadiene and an aromatic vinyl compound, (2) including a polybutadiene block having a vinyl group content of 20% or less, and (3) including a block composed of a conjugated diene compound and an aromatic vinyl compound.
Abstract:
Provided is a rubber material that is well-balanced in terms of tensile strength, low hysteresis loss property, wet grip property, and abrasion resistance. A hydrogenated conjugated diene-based polymer which is a hydrogenation product of a conjugated diene-based polymer including butadiene-derived structural units is produced by a method comprising a step of preparing a conjugated diene-based polymer having, at a side chain moiety thereof, a functional group capable of interacting with silica; and a step of hydrogenating the conjugated diene-based polymer so as to achieve a hydrogenation rate of 80 to 99% of butadiene-derived structural units included in the conjugated diene-based polymer.
Abstract:
Provided is a polymer composition for use in the production of a crosslinked polymer having excellent tensile strength and abrasion resistance. A polymer composition comprising a polymer having multiple anionic functional groups and a polymer having multiple nitrogenated functional groups each represented by formula (1). The anionic functional groups are at least one group selected from a carboxy group, a sulfo group and a phosphate group. In one embodiment, each of the nitrogenated functional groups represented by formula (1) is bound to a structure derived from a conjugated diene compound or a structure derived from an aromatic vinyl compound.
Abstract:
There is provided a hydrogenated conjugated diene-based rubber which can give a crosslinked rubber having high strength and excellent low fuel consumption performance and can give a rubber composition having excellent formability. A hydrogenated conjugated diene-based rubber having a hydrogenation rate of butadiene unit of 90% or more, wherein, in the molecular weight distribution of the hydrogenated conjugated diene-based rubber as determined by a gel permeation chromatographic method, when a peak area of a molecular weight of 1,000 to 250,000 is taken as AL and a peak area of a molecular weight of 250,000 or more is taken as AH, the ratio of AL to the total area of AL and AH is 0.5% to 20%.
Abstract:
A cross-linked rubber exhibits high strength and excellent abrasion resistance as compared with a known cross-linked rubber. The cross-linked rubber is obtained by cross-linking a rubber composition that includes a hydrogenated conjugated diene-based polymer, an olefin-based rubber, and a cross-linking agent, the hydrogenated conjugated diene-based polymer being a hydrogenated product of a polymer that includes a structural unit derived from butadiene, and including at least one of an amino group and a hydrocarbyloxysilyl group at one terminal or each terminal.
Abstract:
Provided is a tire member which is satisfactory in low fuel consumption performance and exhibits higher strength and more excellent abrasion resistance as compared with conventional ones. The tire member is a tire member obtained by subjecting a composition containing a hydrogenated conjugated diene polymer and a crosslinking agent to a crosslinking treatment, wherein the hydrogenated conjugated diene polymer is a hydrogenated product of a conjugated diene polymer that has a structural unit derived from butadiene and has a functional group at one end or both ends and the functional group is one or more groups selected from the group consisting of an amino group, an imino group, a pyridyl group, a phosphino group, a thiol group, and a hydrocarbyloxysilyl group.
Abstract:
A hydrogenated conjugated diene-based polymer which has a structure formed by bonding a nitrogen-containing compound having two or more alkoxysilyl groups and two or more nitrogen atoms with a plurality of conjugated diene-based polymer chains, wherein: when a composition ratio (molar ratio) in the hydrogenated conjugated diene-based polymer of each of a structural unit represented by formula (1), a structural unit represented by formula (2), a structural unit represented by formula (3), and a structural unit represented by formula (4) is p, q, r, and s, respectively, a value a represented by formula (i) is 0.80 or more and 0.97 or less, and an equilibrium storage modulus E′ of the hydrogenated conjugated diene-based polymer is 2.4 MPa or more, α=(p+(0.5×xr))/(p+q+(0.5×xr)+s) . . .(i)