Abstract:
Provided is a polymer composition for use in the production of a crosslinked polymer having excellent tensile strength and abrasion resistance. A polymer composition comprising a polymer having multiple anionic functional groups and a polymer having multiple nitrogenated functional groups each represented by formula (1). The anionic functional groups are at least one group selected from a carboxy group, a sulfo group and a phosphate group. In one embodiment, each of the nitrogenated functional groups represented by formula (1) is bound to a structure derived from a conjugated diene compound or a structure derived from an aromatic vinyl compound.
Abstract:
Described herein are a method for manufacturing a three-dimensional object and a method for preparing data for a nozzle movement path(s) used in the same, and an apparatus for manufacturing the three-dimensional object and a computer for preparing data for nozzle movement paths used in the same. By repeating the step of forming an outer shell material portion constituting part of an outer shell of a three-dimensional object by ejecting a hard shaping material from a nozzle onto a stage, and the step of forming an inner core material portion constituting part of an inner core of the three-dimensional object by ejecting a soft shaping material from a nozzle to an inner region surrounded by the outer shell material portion, the three-dimensional object including the outer shell and the inner core respectively formed from the outer shell material portion and the inner core material portion in plural layers is formed.
Abstract:
[Problem]To provide a method for producing a hydrogenated conjugated diene polymer that is excellent in the improvement in dispersibility at the time of compounding with a filler, is excellent in the reduction in hysteresis loss after compounding, and enables the formation of a polymer alloy which has excellent processability at the time of compounding with a thermoplastic resin or the like and has excellent physical properties after compounding.[Means for solution]A method for producing a hydrogenated conjugated diene polymer, the method comprising a step of polymerizing at least a conjugated diene compound in the presence of a polymerization initiator composed of an amine compound having at least one structure of the formulae (x) and (y) and at least one metal compound selected from alkali metal compounds and alkaline earth metal compounds to obtain a conjugated diene polymer and a step of hydrogenating the conjugated diene polymer. wherein, in the formula (x), R1 is a hydrocarbylene group, the hydrocarbylene group in R1 may contain a heteroatom as long as the hydrocarbylene group does not have an active hydrogen atom, and A1 is a trihydrocarbylsilyl group; in the formula (y), R2 and R3 are each independently a hydrocarbylene group, the hydrocarbylene group in each of R2 and R3 may contain a heteroatom as long as the hydrocarbylene group does not have an active hydrogen atom, and A2 is a functional group which has at least one atom selected from a nitrogen atom N, a phosphorus atom P, and a sulfur atom S, has a trihydrocarbylsilyl group, and does not have an active hydrogen atom and in which the atom that is bonded to R3 is N, P or S; and the above R1 and A1 may be bonded to each other to form a cyclic structure and a part of the above R2, R3, and A2 may be bonded to each other to form a cyclic structure.
Abstract:
A method for producing a three-dimensional (3D) object having excellent moldability and mechanical characteristics is provided. The method includes a molding step of irradiating a composition filled in the cavity of a mold with electromagnetic waves having a wavelength of from 0.01 m to 100 m, and molding the composition into the 3D object. The composition for molding a 3D object contains a solvent and at least one of a polymer and a polymerizable monomer.
Abstract:
A cross-linked rubber exhibits high strength and excellent abrasion resistance as compared with a known cross-linked rubber. The cross-linked rubber is obtained by cross-linking a rubber composition that includes a hydrogenated conjugated diene-based polymer, an olefin-based rubber, and a cross-linking agent, the hydrogenated conjugated diene-based polymer being a hydrogenated product of a polymer that includes a structural unit derived from butadiene, and including at least one of an amino group and a hydrocarbyloxysilyl group at one terminal or each terminal.
Abstract:
Provided is a tire member which is satisfactory in low fuel consumption performance and exhibits higher strength and more excellent abrasion resistance as compared with conventional ones. The tire member is a tire member obtained by subjecting a composition containing a hydrogenated conjugated diene polymer and a crosslinking agent to a crosslinking treatment, wherein the hydrogenated conjugated diene polymer is a hydrogenated product of a conjugated diene polymer that has a structural unit derived from butadiene and has a functional group at one end or both ends and the functional group is one or more groups selected from the group consisting of an amino group, an imino group, a pyridyl group, a phosphino group, a thiol group, and a hydrocarbyloxysilyl group.