Abstract:
A method for producing a rubber composition may include: mixing modified silica (B), pre-prepared by surface treatment of unmodified silica, with a modified conjugated diene-based polymer (A) and a polymer having crystalline character (C). A crosslinked product may be produced through crosslinking a rubber composition obtained from such a method. The crosslinked product may be used for producing a tire including a tread and a sidewall, wherein at least one of the tread and the sidewall is formed of the crosslinked product.
Abstract:
A rubber composition contains: (A) a polymer having a carbon-carbon unsaturated bond and exhibiting a value α of 0.6 or more as obtained by the following formula (i): α=(p+(0.5×r))/(p+q+(0.5×r)+s) (i) wherein p, q, r, and s are the proportions by mole of structural units represented by the following formulae (1), (2), (3), and (4), respectively in the polymer: and (B) modified silica.
Abstract:
Provided is a hydrogenated conjugated diene polymer which is a hydrogenated product of a conjugated diene polymer comprising a structural unit derived from a conjugated diene compound and a structural unit derived from an aromatic vinyl compound, wherein the conjugated diene compound includes butadiene, the hydrogenated conjugated diene polymer is obtained by hydrogenating a polymer in which a vinyl bond content in the structural unit derived from butadiene is 50 mol % or less, an amount of the structural unit derived from the aromatic vinyl compound is 5 to 25 mass % with respect to entire structural units derived from monomers of the polymer, and a hydrogenation rate of the structural unit derived from butadiene is 91% to 99%.
Abstract:
Provided is a rubber material that is well-balanced in terms of tensile strength, low hysteresis loss property, wet grip property, and abrasion resistance. A hydrogenated conjugated diene-based polymer which is a hydrogenation product of a conjugated diene-based polymer including butadiene-derived structural units is produced by a method comprising a step of preparing a conjugated diene-based polymer having, at a side chain moiety thereof, a functional group capable of interacting with silica; and a step of hydrogenating the conjugated diene-based polymer so as to achieve a hydrogenation rate of 80 to 99% of butadiene-derived structural units included in the conjugated diene-based polymer.
Abstract:
A conjugated diene-based polymer comprising a structural unit derived from a conjugated diene compound and having, at a terminal of the polymer, at least one nitrogen-containing group represented by formula (1) is used. In formula (1), R1 is a hydrocarbyl group, and the symbol “*” is a bonding site.
Abstract:
Provided is a hydrogenated conjugated diene polymer which is a hydrogenated product of a conjugated diene polymer comprising a structural unit derived from a conjugated diene compound and a structural unit derived from an aromatic vinyl compound, wherein the conjugated diene compound includes butadiene, the hydrogenated conjugated diene polymer is obtained by hydrogenating a polymer in which a vinyl bond content in structural unit derived from butadiene is 55 mol % or more, and a hydrogenation rate of the structural unit derived from butadiene is 91% to 99%.
Abstract:
Provided is a hydrogenated conjugated diene polymer which is a hydrogenated product of a conjugated diene polymer having a structural unit derived from a conjugated diene compound and a structural unit derived from an aromatic vinyl compound, wherein the conjugated diene compound includes butadiene, an amount of the structural unit derived from the aromatic vinyl compound is 30 mass % or more with respect to entire structural units derived from monomers of the polymer, and a hydrogenation rate of the structural unit derived from butadiene is 80% to 99%.
Abstract:
A modified conjugated diene-based polymer is produced by reacting a conjugated diene-based polymer having an alkali metal or an alkali-earth metal at a terminal of the polymer with a compound represented by formula (1). R1 and R2 independently represent a hydrocarbyl group having 20 or fewer carbon atoms. R3 represents a substituted alkyl group having 20 or fewer carbon atoms prepared through substitution of at least one of a hydrogen atom and —CH2— of an alkyl group by a group containing only at least one heteroatom selected from the group consisting of nitrogen, phosphorus, oxygen, and sulfur, or a monovalent aromatic group having 20 or fewer carbon atoms and containing at least one element selected from the group consisting of nitrogen, phosphorus, oxygen, and sulfur, with the proviso that R3 does not have active hydrogen. R4 represents an alkanediyl group having 20 or fewer carbon atoms. n is 1 or 2
Abstract:
Provided is a tire member which is satisfactory in low fuel consumption performance and exhibits higher strength and more excellent abrasion resistance as compared with conventional ones. The tire member is a tire member obtained by subjecting a composition containing a hydrogenated conjugated diene polymer and a crosslinking agent to a crosslinking treatment, wherein the hydrogenated conjugated diene polymer is a hydrogenated product of a conjugated diene polymer that has a structural unit derived from butadiene and has a functional group at one end or both ends and the functional group is one or more groups selected from the group consisting of an amino group, an imino group, a pyridyl group, a phosphino group, a thiol group, and a hydrocarbyloxysilyl group.