Abstract:
A motor control unit includes: a microcomputer that outputs a motor control signal; a driving circuit that supplies driving electric power to the motor based on the motor control signal; and a capacitor provided at an intermediate portion of a power supply line that connects the driving circuit and a driving power supply to each other. The microcomputer carries out electric discharge from the capacitor by supplying electric power generated by electric charges stored in the capacitor to the motor such that torque is generated by the motor and an angular velocity of the motor becomes less than or equal to a prescribed angular velocity, with torque transmission between the motor and the wheel interrupted by the clutch after a driving relay is turned off.
Abstract:
An overcurrent protection circuit includes an amplifier configured to amplify an inter-terminal voltage of a shunt resistor, an offset application circuit configured to allow the amplifier to provide an output with a predetermined offset voltage additionally applied thereto, a first comparator that compares an output voltage from the amplifier with a predetermined first reference voltage higher than the offset voltage to output a through-current sensing signal when the output voltage from the amplifier is higher than a first reference voltage, and an amplifier failure determination circuit that compares the output voltage from the amplifier with a predetermined second reference voltage that is higher than zero and lower than the offset voltage to output an amplification circuit failure determination signal corresponding to a result of the comparison.
Abstract:
A vehicle control device includes a drive motor and an engaging/disengaging mechanism having a function to permit and cut off torque transmission between the drive motor and wheels. The vehicle control device further includes a smoothing capacitor that smoothes electric power applied from a secondary battery, a drive circuit for the drive motor, a drive circuit for the engaging/disengaging mechanism, and a microprocessor for controlling each drive circuit. If it is determined that a collision of a vehicle has occurred, the microprocessor disconnects each drive circuit from the secondary battery, and outputs a command to disengage the engaging/disengaging mechanism.
Abstract:
In a circuit board, a control pattern portion in which control circuit patterns are formed and a drive pattern portion in which drive circuit patterns are formed are formed in different regions. A recessed portion is formed in a base, and the drive pattern portion is fixed to the base such that insulation between a drive circuit and the base is maintained and the control pattern portion is arranged above the recessed portion. In this way, a space in which a circuit element is able to be mounted is formed between the control pattern portion and the recessed portion.
Abstract:
A motor control device for driving a brushless motor includes a current detecting unit which detects respective phase currents which flow into the brushless motor; a control calculation unit which calculates instruction values showing respective phase voltages to be applied to the brushless motor, and outputs the instruction values as phase voltage instruction values; a phase resistance calculation unit which calculates respective phase resistance values based on detection values of the respective phase currents detected by the current detecting unit, and the instruction values of the respective phase voltages applied to the brushless motor at the time of the detection of the detection values; a correction unit which corrects the phase voltage instruction values according to the respective phase resistance values calculated by the phase resistance calculation unit; and a driving unit which drives the brushless motor based on the phase voltage instruction values after correction by the correction unit.
Abstract:
A power module includes a multilayer circuit board, and first and second three-phase inverters, which are mounted on the multilayer circuit board to be stacked each other. A positive-electrode-side power source conductive trace of the first three-phase inverter and a negative-electrode-side power source conductive trace of the second three-phase inverter are disposed to at least partially face each other in a stacking direction of the multilayer circuit board, such that currents respectively flow through the power source conductive traces in opposite directions in a facing section. A negative-electrode-side power source conductive trace of the first three-phase inverter and a positive-electrode-side power source conductive trace of the second three-phase inverter are disposed to at least partially face each other in the stacking direction of the multilayer circuit board), such that currents respectively flow through the power source conductive traces in opposite directions in a facing section.
Abstract:
In a semiconductor device, a first to a sixth switching elements are joined to a second main surface of a substrate with their electrode surfaces facing the second main surface of the substrate. Non-electrode surfaces of the switching elements are provided with respective heat spreaders joined thereto. Each of the heat spreaders is constituted of a heat spreader main body and a pair of standing portions. The heat spreader main body is formed in a cuboid having rectangular flat surfaces that are elongated in one direction. The standing portions are standing on both edges of a surface of the heat spreader main body.
Abstract:
A drive circuit device includes a circuit board having a multilayer structure, which includes first to fourth circuit conductor layers, and first to third insulating layers; and heat sinks that dissipate heat of the circuit board to an outside. An upper FET state is embedded in the first insulating layer, and a lower FET state is embedded in the second insulating layer. The upper FET and the lower FET are disposed so that a region in which the upper FET is positioned and a region in which the lower FET is positioned overlap each other in a stacking direction. A lead-out portion is formed at a second circuit pattern of the circuit conductor layer, the lead-out portion extending from the circuit board in a direction orthogonal to the stacking direction, and being connected to the heat sinks so that heat is transferred to the heat sinks.
Abstract:
A motor control multilayer printed wiring board includes: a multilayer printed wiring board having a plurality of laminated conductor layers; an upper-row FET connected to the conductor layers and configured to control a motor; a lower-row FET connected to the conductor layers and arranged at a location at which the lower-row FET overlaps with the upper-row FET in a laminated direction in which the conductor layers are laminated, the lower-row FET being configured to control the motor; and a heat dissipation mechanism arranged on the multilayer printed wiring board and arranged at a location at which the heat dissipation mechanism overlaps with at least one of the upper-row FET and the lower-row FET in the laminated direction.