摘要:
There is provided a digital lock detector and a frequency synthesizer using the same. The digital lock detector includes a comparator unit receiving a plurality of control bits, and generating a bit signal to notice a lock condition of the plurality of control bits; a delay cell block generating a plurality of delay signals based on the bit signal, and outputting a clock signal by combining the bit signal and the plurality of delay signals; and a detection unit detecting a shift time of the clock signal, and generating a lock indication signal according to the detection result.
摘要:
There is provided a digital lock detector and a frequency synthesizer using the same. The digital lock detector includes a comparator unit receiving a plurality of control bits, and generating a bit signal to notice a lock condition of the plurality of control bits; a delay cell block generating a plurality of delay signals based on the bit signal, and outputting a clock signal by combining the bit signal and the plurality of delay signals; and a detection unit detecting a shift time of the clock signal, and generating a lock indication signal according to the detection result.
摘要:
There is provided a digital lock detector and a frequency synthesizer using the same. The digital lock detector includes a comparator unit receiving a plurality of control bits, and generating a bit signal to notice a lock condition of the plurality of control bits; a delay cell block generating a plurality of delay signals based on the bit signal, and outputting a clock signal by combining the bit signal and the plurality of delay signals; and a detection unit detecting a shift time of the clock signal, and generating a lock indication signal according to the detection result.
摘要:
A frequency calibration loop circuit having a pre-set frequency channel word (FCW) command value, a bit inputted to obtain a target frequency in an oscillator and a pre-set minimum division ratio n (n is a constant) of a programmable divider, includes: an oscillator adjusting an oscillation frequency of an oscillation signal according to a control value; a programmable divider dividing the oscillation signal according to a division ratio to output a divided signal; a counter counting the number of clocks of the divided signal for one cycle of a reference signal to output a count value; and a frequency detector obtaining the control value by subtracting the count value from a reference comparison value, wherein the reference comparison value is obtained by dividing a Frequency Channel Word (FCW) command value by a minimum division ratio of the programmable divider.
摘要:
A frequency calibration loop circuit having a pre-set frequency channel word (FCW) command value, a bit inputted to obtain a target frequency in an oscillator and a pre-set minimum division ratio n (n is a constant) of a programmable divider, includes: an oscillator adjusting a oscillation frequency according to control value; a programmable divider dividing the oscillation frequency according to a division ratio; a counter counting the number of clocks of the divided frequency by using a reference frequency; and a frequency detector outputting a value obtained by subtracting the number of the counted clocks from a reference comparison value, a value obtained by dividing a Frequency Channel Word (FCW) command value by a minimum division ratio of the programmable divider, as the control value of the oscillator.
摘要:
A coplanar waveguide CPW using multi-layer interconnection CMOS technology is provided. In the CPW including an interlayer insulator disposed on a substrate, metal multilayers disposed on the interlayer insulator, and a ground line-a signal line-a ground line formed of an uppermost metal layer, when a ground line of a lowermost layer is connected to the ground line of the uppermost layer, intermediate metal layers are designed to gradually increase or decrease in width, or to be uneven so as to maximize an area where an ultra-high frequency spreads, thereby minimizing CPW loss and maximizing a slow wave effect. As a result, it is possible to improve performance of an ultra-high frequency circuit and miniaturize the circuit.
摘要:
An apparatus and method for removing an interference signal using a selective frequency phase converter are disclosed. The apparatus for removing an interference signal using a selective frequency phase converter includes: a first phase converter configured to convert a phase of a received RF signal to differentially output first and second signals having a phase difference of 180° from each other; a second phase converter configured to receive the first signal and selectively convert the phase of a particular frequency band; a third phase converter configured to receive the second signal and selectively convert the phase of a particular frequency band; a timing controller configured to correct a signal delay time between the output from the second phase converter and that of the third phase converter; and an adder configured to add an output from the second phase converter and an output from the third phase converter, wherein the second and third phase converters phase-convert the first and second signals such that the phases of the signals of the particular frequency bands do not have a phase difference of 180° from each other.
摘要:
There is provided a capacitor having variable capacitance, which forms different capacitances according to a control signal by applying a switch to a metal-oxide-metal (MOM) structure plate capacitor using a CMOS process. The capacitor includes a stack structure including a plurality of metal layers including a first metal layer, and a plurality of dielectric layers respectively interposed between the plurality of metal layers, and a switch part including at least one switch having one side connected to at least one metal layer among the plurality of metal layers other than the first metal layer. The first metal layer and the other side of the switch serve as both terminals of the capacitor, and at least two capacitances are provided between both terminals of the capacitor upon controlling a short/open of the switch.
摘要:
An all digital phase-locked loop (ADPLL) includes: a phase counter accumulating a frequency setting word value and the phase of a digitally controlled oscillator (DCO) clock and detecting a fine phase difference between a reference clock and a retimed clock; a phase detector detecting a digital phase error value compensating for a phase difference between the frequency setting word value and the DCO clock according to the fine phase difference to detect a digital phase error value; a digital loop filter filtering the digital phase error value and controlling PLL operational characteristics; a lock detector generating a lock indication signal according an output of the digital loop filter; a digitally controlled oscillator varying the frequency of the DCO clock according to the output from the digital loop filter; and a retimed clock generator generating the retimed clock by retiming the DCO clock at a low frequency.
摘要:
An all digital phase-locked loop (ADPLL) includes: a phase counter accumulating a frequency setting word value and the phase of a digitally controlled oscillator (DCO) clock and detecting a fine phase difference between a reference clock and a retimed clock; a phase detector detecting a digital phase error value compensating for a phase difference between the frequency setting word value and the DCO clock according to the fine phase difference to detect a digital phase error value; a digital loop filter filtering the digital phase error value and controlling PLL operational characteristics; a lock detector generating a lock indication signal according an output of the digital loop filter; a digitally controlled oscillator varying the frequency of the DCO clock according to the output from the digital loop filter; and a retimed clock generator generating the retimed clock by retiming the DCO clock at a low frequency.