摘要:
Flash lamp apparatuses that generate electromagnetic radiation with wavelengths greater than and/or less than a defined range of wavelengths are disclosed.
摘要:
Temperature measurement using a pyrometer in a processing chamber is described. The extraneous light received by the pyrometer is reduced. In one example, a photodetector is used to measure the intensity of light within the processing chamber at a defined wavelength. A temperature circuit is used to convert the measured light intensity to a temperature signal, and a doped optical window between a heat source and a workpiece inside processing chamber is used to absorb light at the defined wavelength directed at the workpiece from the heat source.
摘要:
In some embodiments radiation incident on a wafer is provided to perform an annealing process, and the wafer is cooled at an edge portion to reduce temperature and stress on the wafer. Other embodiments are described and claimed.
摘要:
An annealing method and apparatus for semiconductor manufacturing is described. The method and apparatus allows an anneal that can span a thermal budget and be tailored to a specific process and its corresponding activation energy. In some cases, the annealing method spans a timeframe from about 1 millisecond to about 1 second. An example for this annealing method includes a sub-second anneal method where a reduction in the formation of nickel pipes is achieved during salicide processing. In some cases, the method and apparatus combine the rapid heating rate of a sub-second anneal with a thermally conductive substrate to provide quick cooling for a silicon wafer. Thus, the thermal budget of the sub-second anneal methods may span the range from conventional RTP anneals to flash annealing processes (including duration of the anneal, as well as peak temperature). Other embodiments are described.
摘要:
Embodiments relate to a substrate or wafer edge support having an emmisivity greater than that of a silicon wafer, where the edge support is for supporting a wafer during processing to form circuit devices on or in the wafer. Embodiments also include temperature sensors, heat conducting gas jets, and photonic energy can be directed to sense and control the temperature of the edge support and/or wafer edge during annealing to reduce temperature roll-off or roll-up at the edge as compared to the center of the wafer. Specifically, use of an edge support having an emmisivity greater than or equal to that of the wafer during processing allows helium gas jets directed at the edge support and/or wafer edge to reduce temperature roll-up at the edge during annealing. Because wafers from different processes and anneal locations may all have different emmisivities, use of the feedback loop will enable one edge ring to support the uniform anneal of wafers with a range of different emmisivities.
摘要:
A method, apparatus, and system including a reflecting device having a plurality of reflecting zones with associated reflectivities for reflecting light from a flash lamp, are described herein.
摘要:
Temperature measurement using a pyrometer in a processing chamber is described. The extraneous light received by the pyrometer is reduced. In one example, a photodetector is used to measure the intensity of light within the processing chamber at a defined wavelength. A temperature circuit is used to convert the measured light intensity to a temperature signal, and a doped optical window between a heat source and a workpiece inside processing chamber is used to absorb light at the defined wavelength directed at the workpiece from the heat source.
摘要:
An annealing method and apparatus for semiconductor manufacturing is described. The method and apparatus allows an anneal that can span a thermal budget and be tailored to a specific process and its corresponding activation energy. In some cases, the annealing method spans a timeframe from about 1 millisecond to about 1 second. An example for this annealing method includes a sub-second anneal method where a reduction in the formation of nickel pipes is achieved during salicide processing. In some cases, the method and apparatus combine the rapid heating rate of a sub-second anneal with a thermally conductive substrate to provide quick cooling for a silicon wafer. Thus, the thermal budget of the sub-second anneal methods may span the range from conventional RTP anneals to flash annealing processes (including duration of the anneal, as well as peak temperature). Other embodiments are described.
摘要:
Embodiments relate to a substrate or wafer edge support having an emmisivity greater than that of a silicon wafer, where the edge support is for supporting a wafer during processing to form circuit devices on or in the wafer. Embodiments also include temperature sensors, heat conducting gas jets, and photonic energy can be directed to sense and control the temperature of the edge support and/or wafer edge during annealing to reduce temperature roll-off or roll-up at the edge as compared to the center of the wafer. Specifically, use of an edge support having an emmisivity greater than or equal to that of the wafer during processing allows helium gas jets directed at the edge support and/or wafer edge to reduce temperature roll-up at the edge during annealing. Because wafers from different processes and anneal locations may all have different emmisivities, use of the feedback loop will enable one edge ring to support the uniform anneal of wafers with a range of different emmisivities.
摘要:
A vertical semiconductor wafer carrier comprises a circular base, a first wafer support rod mounted at a first position proximate a perimeter of the circular base, a second wafer support rod mounted at a second position proximate the perimeter of the circular base, wherein an angle θ12 formed between the first position and the second position relative to a center of the circular base is around 20°, a third wafer support rod mounted at a third position proximate the perimeter of the circular base, and a fourth wafer support rod mounted at a fourth position proximate the perimeter of the circular base, wherein an angle θ34 formed between the third position and the fourth position relative to the center of the circular base is around 20°, and wherein an angle θ14 formed between the first and fourth positions relative to the center of the circular base is around 180°.