Fabrication of layer-by-layer photonic crystals using two polymer microtransfer molding
    1.
    发明申请
    Fabrication of layer-by-layer photonic crystals using two polymer microtransfer molding 失效
    使用两个聚合物微转移模塑制造逐层光子晶体

    公开(公告)号:US20070289119A1

    公开(公告)日:2007-12-20

    申请号:US11455486

    申请日:2006-06-19

    摘要: A method of manufacturing photonic band gap structures operable in the optical spectrum has been presented. The method comprises the steps of filling a plurality of grooves of an elastomeric mold with a UV curable first polymer, each groove in parallel with each other and partially curing the first polymer. A second polymer is coated on the first polymer. A substrate or a multi-layer polymer structure is placed on the filled mold and the resulting structure is exposed to UV light (i.e., is UV cured). The mold is peeled away from the first and second polymers such that a layer of polymer rods is formed on the substrate/multi-layer polymer structure. The process is repeated until a desired number of layers have been formed. The multi-layer structure can be used to create ceramic and metallic photonic band gaps by infiltration, electro-deposition, and/or metal coating.

    摘要翻译: 已经提出了在光谱中可操作的制造光子带隙结构的方法。 该方法包括以下步骤:用UV可固化的第一聚合物填充弹性体模具的多个凹槽,每个凹槽彼此平行并部分固化第一聚合物。 将第二聚合物涂覆在第一聚合物上。 将基底或多层聚合物结构放置在填充的模具上,并将所得结构暴露于UV光(即,UV固化)。 将模具从第一和第二聚合物剥离,使得在基底/多层聚合物结构上形成聚合物棒层。 重复该过程,直到形成所需数量的层。 多层结构可用于通过渗透,电沉积和/或金属涂层来产生陶瓷和金属光子带隙。

    Fabrication of layer-by-layer photonic crystals using two polymer microtransfer molding
    2.
    发明授权
    Fabrication of layer-by-layer photonic crystals using two polymer microtransfer molding 失效
    使用两个聚合物微转移模塑制造逐层光子晶体

    公开(公告)号:US07625515B2

    公开(公告)日:2009-12-01

    申请号:US11455486

    申请日:2006-06-19

    IPC分类号: H01L21/00

    摘要: A method of manufacturing photonic band gap structures operable in the optical spectrum has been presented. The method comprises the steps of filling a plurality of grooves of an elastomeric mold with a UV curable first polymer, each groove in parallel with each other and partially curing the first polymer. A second polymer is coated on the first polymer. A substrate or a multi-layer polymer structure is placed on the filled mold and the resulting structure is exposed to UV light (i.e., is UV cured). The mold is peeled away from the first and second polymers such that a layer of polymer rods is formed on the substrate/multi-layer polymer structure. The process is repeated until a desired number of layers have been formed. The multi-layer structure can be used to create ceramic and metallic photonic band gaps by infiltration, electro-deposition, and/or metal coating.

    摘要翻译: 已经提出了在光谱中可操作的制造光子带隙结构的方法。 该方法包括以下步骤:用UV可固化的第一聚合物填充弹性体模具的多个凹槽,每个凹槽彼此平行并部分固化第一聚合物。 将第二聚合物涂覆在第一聚合物上。 将基底或多层聚合物结构放置在填充的模具上,并将所得结构暴露于UV光(即,UV固化)。 将模具从第一和第二聚合物剥离,使得在基底/多层聚合物结构上形成聚合物棒层。 重复该过程,直到形成所需数量的层。 多层结构可用于通过渗透,电沉积和/或金属涂层来产生陶瓷和金属光子带隙。

    Fabrication of photonic band gap materials using microtransfer molded templates
    3.
    发明授权
    Fabrication of photonic band gap materials using microtransfer molded templates 失效
    使用微转移模塑模板制造光子带隙材料

    公开(公告)号:US06555406B1

    公开(公告)日:2003-04-29

    申请号:US10081729

    申请日:2002-02-22

    IPC分类号: H01L2100

    CPC分类号: B82Y20/00 G02B6/1225 G02B6/13

    摘要: A method of manufacturing photonic band gap structures operable in the optical spectrum has been presented. The method comprises the steps of creating a patterned template for an elastomeric mold, fabricating an elastomeric mold from poly-dimethylsiloxane (PDMS) or other suitable polymer, filling the elastomeric mold with a second polymer such as epoxy or other suitable polymer, stamping the second polymer by making contact with a substrate or multilayer structure, removing the elastomeric mold, infiltrating the multilayer structure with ceramic or metal, and heating the multilayer structure to remove the second polymer to form a photonic band gap structure.

    摘要翻译: 已经提出了在光谱中可操作的制造光子带隙结构的方法。 该方法包括以下步骤:创建用于弹性体模具的图案化模板,由聚二甲基硅氧烷(PDMS)或其它合适的聚合物制造弹性体模具,用第二聚合物如环氧树脂或其它合适的聚合物填充弹性体模具, 聚合物通过与基底或多层结构接触,去除弹性体模具,用陶瓷或金属渗透多层结构,并加热多层结构以除去第二聚合物以形成光子带隙结构。

    Manufacturing Method of Photonic Crystal
    4.
    发明申请
    Manufacturing Method of Photonic Crystal 审中-公开
    光子晶体的制造方法

    公开(公告)号:US20130115434A1

    公开(公告)日:2013-05-09

    申请号:US13727304

    申请日:2012-12-26

    IPC分类号: B05D5/06

    摘要: A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

    摘要翻译: 提供了一种光子晶体的制造方法。 在该方法中,通过原子层沉积工艺将高折射率材料共形沉积在由低折射率材料构成的周期性模板的暴露部分上,使得模板之间的折射率或介电常数之差 并且相邻的空气变得更大,这使得可以形成具有优异的光子带隙的三维光子晶体。 这里,三维结构可以通过层叠法制备。

    Fabrication of photonic band gap materials
    6.
    发明授权
    Fabrication of photonic band gap materials 失效
    光子带隙材料的制造

    公开(公告)号:US06339030B1

    公开(公告)日:2002-01-15

    申请号:US09477191

    申请日:2000-01-05

    IPC分类号: H01L2131

    摘要: A method for forming a periodic dielectric structure exhibiting photonic band gap effects includes forming a slurry of a nano-crystalline ceramic dielectric or semiconductor material and monodisperse polymer microspheres, depositing a film of the slurry on a substrate, drying the film, and calcining the film to remove the polymer microspheres therefrom. The film may be cold-pressed after drying and prior to calcining. The ceramic dielectric or semiconductor material may be titania, and the polymer microspheres may be polystyrene microspheres.

    摘要翻译: 形成表现出光子带隙效应的周期性电介质结构的方法包括形成纳米晶体陶瓷电介质或半导体材料和单分散聚合物微球的浆料,将浆料膜沉积在基底上,干燥膜并煅烧该膜 从其中除去聚合物微球。 干燥后,煅烧前可以将薄膜冷压。 陶瓷电介质或半导体材料可以是二氧化钛,聚合物微球可以是聚苯乙烯微球。

    Multi-channel polarized thermal emitter
    7.
    发明授权
    Multi-channel polarized thermal emitter 失效
    多通道偏振热发射器

    公开(公告)号:US08487283B1

    公开(公告)日:2013-07-16

    申请号:US12288742

    申请日:2008-10-23

    IPC分类号: H01L35/02 G01J3/10

    CPC分类号: G01J3/10

    摘要: A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.

    摘要翻译: 提出了一种多通道偏振热发射器(PTE)。 多通道PTE可以在正常出现时不使用偏振器发射偏振热辐射。 多通道PTE由单层和均质金属板上的两层金属光栅组成。 它可以通过称为双聚合物微转移成型的低成本软光刻技术来制造。 可以通过改变光栅的周期性来调整中红外(MIR)辐射峰的光谱位置,并且通过改变两个光栅的取向之间的相互角来调整峰之间的光谱间隔。

    Metallic layer-by-layer photonic crystals for linearly-polarized thermal emission and thermophotovoltaic device including same
    8.
    发明授权
    Metallic layer-by-layer photonic crystals for linearly-polarized thermal emission and thermophotovoltaic device including same 有权
    用于线性偏振热发射的金属逐层光子晶体和包括其的热光伏器件

    公开(公告)号:US09400219B2

    公开(公告)日:2016-07-26

    申请号:US12754657

    申请日:2010-04-06

    CPC分类号: G01J5/522 G01J3/108 H02S10/30

    摘要: Metallic thermal emitters consisting of two layers of differently structured nickel gratings on a homogeneous nickel layer are fabricated by soft lithography and studied for polarized thermal radiation. A thermal emitter in combination with a sub-wavelength grating shows a high extinction ratio, with a maximum value close to 5, in a wide mid-infrared range from 3.2 to 7.8 μm, as well as high emissivity up to 0.65 at a wavelength of 3.7 μm. All measurements show good agreement with theoretical predictions. Numerical simulations reveal that a high electric field exists within the localized air space surrounded by the gratings and the intensified electric-field is only observed for the polarizations perpendicular to the top sub-wavelength grating. This result suggests how the emissivity of a metal can be selectively enhanced at a certain range of wavelengths for a given polarization.

    摘要翻译: 通过软光刻制造在均质镍层上由两层不同结构的镍光栅组成的金属热发射体,并研究了偏振热辐射。 与亚波长光栅组合的热发射器在3.2至7.8μm的宽中红外范围内具有高消光比,最大值接近5,以及波长为0.65的高发射率 3.7μm。 所有测量结果与理论预测表现出良好的一致性。 数值模拟表明,在由光栅包围的局部空气空间内存在高电场,仅对垂直于顶部亚波长光栅的偏振观察到强化电场。 该结果表明,对于给定的极化,金属的发射率如何可以在特定波长范围内选择性地增强。

    Metallic Layer-by-Layer Photonic Crystals for Linearly-Polarized Thermal Emission and Thermophotovoltaic Device Including Same
    9.
    发明申请
    Metallic Layer-by-Layer Photonic Crystals for Linearly-Polarized Thermal Emission and Thermophotovoltaic Device Including Same 有权
    用于线性偏振热发射的金属逐层光子晶体和包括其的热光伏器件

    公开(公告)号:US20100294325A1

    公开(公告)日:2010-11-25

    申请号:US12754657

    申请日:2010-04-06

    IPC分类号: H01L35/02 G01J3/10

    CPC分类号: G01J5/522 G01J3/108 H02S10/30

    摘要: Metallic thermal emitters consisting of two layers of differently structured nickel gratings on a homogeneous nickel layer are fabricated by soft lithography and studied for polarized thermal radiation. A thermal emitter in combination with a sub-wavelength grating shows a high extinction ratio, with a maximum value close to 5, in a wide mid-infrared range from 3.2 to 7.8 μm, as well as high emissivity up to 0.65 at a wavelength of 3.7 μm. All measurements show good agreement with theoretical predictions. Numerical simulations reveal that a high electric field exists within the localized air space surrounded by the gratings and the intensified electric-field is only observed for the polarizations perpendicular to the top sub-wavelength grating. This result suggests how the emissivity of a metal can be selectively enhanced at a certain range of wavelengths for a given polarization.

    摘要翻译: 通过软光刻制造在均质镍层上由两层不同结构的镍光栅组成的金属热发射体,并研究了偏振热辐射。 与亚波长光栅组合的热发射器在3.2至7.8μm的宽中红外范围内具有高消光比,最大值接近5,以及波长为0.65的高发射率 3.7μm。 所有测量结果与理论预测表现出良好的一致性。 数值模拟表明,在由光栅包围的局部空气空间内存在高电场,仅对垂直于顶部亚波长光栅的偏振观察到强化电场。 该结果表明,对于给定的极化,金属的发射率如何可以在特定波长范围内选择性地增强。