摘要:
There is provided a master glass having a structure capable of preventing damage caused by static electricity. The master glass is a substrate on which a deposition process is experimentally performed by being experimentally loaded loading the master glass into a deposition apparatus before starting the deposition process of the substrate for electronic devices. In one embodiment, a master glass includes first conductive patterns and a second conductive pattern. The first conductive patterns are formed to correspond to a deposition pattern required in a substrate for electronic devices. The second conductive pattern electrically connects all the first conductive patterns to one another.
摘要:
There is provided a master glass having a structure capable of preventing damage caused by static electricity. The master glass is a substrate on which a deposition process is experimentally performed by being experimentally loaded loading the master glass into a deposition apparatus before starting the deposition process of the substrate for electronic devices. In one embodiment, a master glass includes first conductive patterns and a second conductive pattern. The first conductive patterns are formed to correspond to a deposition pattern required in a substrate for electronic devices. The second conductive pattern electrically connects all the first conductive patterns to one another.
摘要:
A flat panel display and a method of fabricating the same are provided. The flat panel display includes a conductor, and a passivation layer pattern disposed on a side end of the conductor. As such, the passivation layer pattern can prevent or reduce corrosion and damage of the conductor. In one embodiment, the conductor includes a conductive layer formed of a material selected from the group consisting of aluminum and an aluminum alloy. The passivation layer pattern may be formed of an organic material or an inorganic material.
摘要:
A flat panel display and a method of fabricating the same are provided. The flat panel display includes a conductor, and a passivation layer pattern disposed on a side end of the conductor. As such, the passivation layer pattern can prevent or reduce corrosion and damage of the conductor. In one embodiment, the conductor includes a conductive layer formed of a material selected from the group consisting of aluminum and an aluminum alloy. The passivation layer pattern may be formed of an organic material or an inorganic material.
摘要:
A flat panel display and a method of fabricating the same are provided. The flat panel display includes a conductor, and a passivation layer pattern disposed on a side end of the conductor. As such, the passivation layer pattern can prevent or reduce corrosion and damage of the conductor. In one embodiment, the conductor includes a conductive layer formed of a material selected from the group consisting of aluminum and an aluminum alloy. The passivation layer pattern may be formed of an organic material or an inorganic material.
摘要:
A flat panel display and a method of fabricating the same are provided. The flat panel display includes a conductor, and a passivation layer pattern disposed on a side end of the conductor. As such, the passivation layer pattern can prevent or reduce corrosion and damage of the conductor. In one embodiment, the conductor includes a conductive layer formed of a material selected from the group consisting of aluminum and an aluminum alloy. The passivation layer pattern may be formed of an organic material or an inorganic material.
摘要:
A mask adhesion unit for a deposition apparatus includes a magnetic assembly, a cap plate spaced apart from the magnetic assembly, and a magnetic control unit between edges of the magnetic assembly, and the cap plate. A deposition apparatus using the same is capable of adhering a substrate and a mask assembly together using the mask adhesion unit to improve deposition precision, while preventing deformation of a slit of the mask assembly.
摘要:
A mask for thin film deposition used in forming an organic thin film or a conductive layer in an organic light emitting device is disclosed. In one embodiment, the mask includes i) a base member, ii) a plurality of slits configured to penetrate through the base member, wherein the plurality of slits have a predetermined length and extend in a first direction, wherein the plurality of slits comprise an outermost slit positioned in an outermost in a second direction having a predetermined angle with respect to the first direction, and wherein the outermost slit comprises two sub-slits separated from each other and iii) a rib supporting part formed between and contacting the two sub-slits, wherein the rib supporting part extends from a rib which is adjacent to the outermost slit.
摘要:
A light emitting display and a method of manufacturing the same. The light emitting display includes a substrate, a plurality of first and second signal lines that cross each other on the substrate, a plurality of organic light emitting diodes (OLEDs) coupled between the first signal lines and the second signal lines, a power source supply line for supplying a power source voltage to the OLEDs, and a plurality of inspection signal lines coupled to at least one of the first signal lines or the second signal lines. At least one of the inspection signal lines is discontinuous at a region overlapping the power source supply line and ends of the discontinuous inspection signal line at the region overlapping the power source supply line are coupled to each other through a conductive region under the inspection signal line.
摘要:
An organic light emitting display and a method of fabricating the same are disclosed. One embodiment of the organic light emitting display includes a substrate including a pixel region and a cathode-on-driver (COD) region adjacent to the pixel region, a thin film transistor formed on the pixel region of the substrate, and a planarization film formed on an entire surface of the substrate to cover the thin film transistor. The organic light emitting display also includes an organic light emitting diode including a first pixel electrode formed on the planarization film and connected to the thin film transistor, an organic light emitting layer formed on the first pixel electrode, and a second pixel electrode formed on an entire surface of the substrate over the organic light emitting layer. The organic light emitting display further includes a pixel definition layer which is provided between the planarization film and the second pixel electrode. The pixel definition layer has an opening where the organic light emitting layer is located. Openings are formed through the planarization film and the pixel definition layer to provide a recess for separating the pixel region and the COD region from each other. The organic light emitting display further includes a conductive layer partially filling the recess for reducing the depth of the recess.