摘要:
An integrated circuit semiconductor device includes a first transistor formed at a lower substrate and configured with at least one of a vertical transistor and a planar transistor. A bonding insulation layer is formed on the first transistor, and an upper substrate is bonded on the bonding insulation layer. A second transistor configured with at least one of a vertical transistor and a planar transistor is formed at the upper substrate. The first transistor and the second transistor are connected by an interconnection layer.
摘要:
An integrated circuit semiconductor device includes a first transistor formed at a lower substrate and configured with at least one of a vertical transistor and a planar transistor. A bonding insulation layer is formed on the first transistor, and an upper substrate is bonded on the bonding insulation layer. A second transistor configured with at least one of a vertical transistor and a planar transistor is formed at the upper substrate. The first transistor and the second transistor are connected by an interconnection layer.
摘要:
A method of manufacturing a MOS transistor with a void-free gate electrode is provided. A gate oxide film may be formed on a semiconductor, and a poly silicon film for a gate electrode may be deposited on the gate oxide film. P-type impurities may be implanted into the poly silicon film, and a thickness of the poly silicon film may be removed by chemical mechanical polishing.
摘要:
Semiconductor memory devices include a semiconductor substrate and a plurality of semiconductor material pillars in a spaced relationship on the semiconductor substrate. Respective surrounding gate electrodes surround ones of the pillars. A first source/drain region is in the semiconductor substrate between adjacent ones of the pillars and a second source/drain region is in an upper portion of at least one of the adjacent pillars. A buried bit line is in the first source/drain region and electrically coupled to the first source/drain region and a storage node electrode is on the upper portion of the at least one of the adjacent pillars and electrically contacting with the second source/drain region.
摘要:
Embodiments according to the inventive concept can provide semiconductor devices including a substrate and a plurality of active pillars arranged in a matrix on the substrate. Each of the pillars includes a channel part that includes a channel dopant region disposed in a surface of the channel part. A gate electrode surrounds an outer surface of the channel part. The plurality of active pillars may be arranged in rows in a first direction and columns in a second direction crossing the first direction.
摘要:
A circuit device including vertical transistors connected to buried bitlines and a method of manufacturing the circuit device. The circuit device includes a semiconductor substrate including a peripheral circuit region and left and right cell regions at both sides of the peripheral circuit region, bottom active regions arranged on the semiconductor substrate to be spaced apart from one another in a column direction and to extend from the peripheral circuit region alternately to the left cell region and the right cell region in a row direction, channel pillars protruding from the bottom active regions in a vertical direction and arranged to be aligned in the row direction and spaced apart from one another, gate electrodes provided with a gate dielectric layer and attached to surround side surfaces of the channel pillars, and buried bitlines extending along the bottom active regions, the bottom active regions including a bottom source/drain region.
摘要:
Semiconductor memory devices include a semiconductor substrate and a plurality of semiconductor material pillars in a spaced relationship on the semiconductor substrate. Respective surrounding gate electrodes surround ones of the pillars. A first source/drain region is in the semiconductor substrate between adjacent ones of the pillars and a second source/drain region is in an upper portion of at least one of the adjacent pillars. A buried bit line is in the first source/drain region and electrically coupled to the first source/drain region and a storage node electrode is on the upper portion of the at least one of the adjacent pillars and electrically contacting with the second source/drain region.
摘要:
Methods of manufacturing a semiconductor device include forming a matrix of active pillars including a channel part on a substrate. Channel dopant regions are formed in the channel parts of the active pillars. Gate electrodes are formed on an outer surface of the channel parts that surround the channel dopant regions. The matrix of active pillars may be arranged in rows in a first direction and in columns in a second direction crossing the first direction on the substrate.
摘要:
Channels of two transistors are vertically formed on portions of two opposite side surfaces of one active region, and gate electrodes are vertically formed on a device isolation layer contacting the channels of the active region. A common bit line contact plug is formed in the central portions of the active region, two storage node contact plugs are formed on both sides of the bit line contact plug, and an insulating spacer is formed on a side surface of the bit line contact plug. A word line, a bit line, and a capacitor are sequentially stacked on the semiconductor substrate, like a conventional semiconductor memory device. Thus, effective space arrangement of a memory cell is possible such that a 4F2 structure is constituted, and a conventional line and contact forming process can be applied such that highly integrated semiconductor memory device is readily fabricated.
摘要:
Vertical channel semiconductor devices include a semiconductor substrate with a pillar having an upper surface. An insulated gate electrode is around a periphery of the pillar. The insulated gate electrode has an upper surface at a vertical level lower than the upper surface of the pillar to vertically space apart the insulated gate electrode from the upper surface of the pillar. A first source/drain region is in the substrate adjacent the pillar. A second source/drain region is disposed in an upper region of the pillar including the upper surface of the pillar. A contact pad contacts the entire upper surface of the pillar to electrically connect to the second source/drain region.