摘要:
A vertical NAND string nonvolatile memory device can include an upper dopant region disposed at an upper portion of an active pattern and can have a lower surface located a level higher than an upper surface of an upper selection gate pattern. A lower dopant region can be disposed at a lower portion of the active pattern and can have an upper surface located at a level lower than a lower surface of a lower selection gate pattern.
摘要:
A vertical NAND string nonvolatile memory device can include an upper dopant region disposed at an upper portion of an active pattern and can have a lower surface located a level higher than an upper surface of an upper selection gate pattern. A lower dopant region can be disposed at a lower portion of the active pattern and can have an upper surface located at a level lower than a lower surface of a lower selection gate pattern.
摘要:
A three-dimensional semiconductor device includes a semiconductor substrate, vertical channel structures arranged on the semiconductor substrate in a matrix, a P-type semiconductor layer disposed at the semiconductor substrate to be in direct with the vertical channel structures, and a common source line disposed at the semiconductor substrate between the vertical channel structures. The common source line may be in contact with the P-type semiconductor layer.
摘要:
Provided is a semiconductor memory device. In the semiconductor memory device, a lower selection gate controls a first channel region that is defined at a semiconductor substrate and a second channel region that is defined at the lower portion of an active pattern disposed on the semiconductor substrate. The first threshold voltage of the first channel region is different from the second threshold voltage of the second channel region.
摘要:
Provided is a semiconductor memory device. In the semiconductor memory device, a lower selection gate controls a first channel region that is defined at a semiconductor substrate and a second channel region that is defined at the lower portion of an active pattern disposed on the semiconductor substrate. The first threshold voltage of the first channel region is different from the second threshold voltage of the second channel region.
摘要:
Provided is a semiconductor memory device. In the semiconductor memory device, a lower selection gate controls a first channel region that is defined at a semiconductor substrate and a second channel region that is defined at the lower portion of an active pattern disposed on the semiconductor substrate. The first threshold voltage of the first channel region is different from the second threshold voltage of the second channel region.
摘要:
Provided is a semiconductor memory device. In the semiconductor memory device, a lower selection gate controls a first channel region that is defined at a semiconductor substrate and a second channel region that is defined at the lower portion of an active pattern disposed on the semiconductor substrate. The first threshold voltage of the first channel region is different from the second threshold voltage of the second channel region.
摘要:
A three-dimensional semiconductor device includes a semiconductor substrate, vertical channel structures arranged on the semiconductor substrate in a matrix, a P-type semiconductor layer disposed at the semiconductor substrate to be in direct with the vertical channel structures, and a common source line disposed at the semiconductor substrate between the vertical channel structures. The common source line may be in contact with the P-type semiconductor layer.
摘要:
Provided is a method of operating a non-volatile memory device. The method includes applying a turn-on voltage to each of first and second string select transistors of a first NAND string, applying first and second voltages to third and fourth string select transistors of a second NAND string, respectively, and applying a high voltage to word lines connected with memory cells of the first and second NAND strings.
摘要:
A semiconductor device includes stacked-gate structures including a plurality of cell gate patterns and insulating patterns alternately stacked on a semiconductor substrate and extending in a first direction. Active patterns and gate dielectric patterns are disposed in the stacked-gate structures. The active patterns penetrate the stacked-gate structures and are spaced apart from each other in a second direction intersecting the first direction, and the gate dielectric patterns are interposed between the cell gate patterns and the active patterns and extend onto upper and lower surfaces of the cell gate patterns. The active patterns share the cell gate patterns in the stacked-gate structures.