摘要:
A self-aligned, under-gated TFT device (10). A base layer (14) is formed. A conductive layer (16) is formed overlying the base layer (14). A dielectric layer (18) is formed overlying the conductive layer (16). A sacrificial layer (20) is formed overlying the dielectric layer (18). The layers (16, 18, and 20) are etched to form a "pillar" region. A dielectric layer (22) and a planar layer (24), which both overlie the "pillar" region, are etched back to form a substantially planar surface and expose a top portion of the sacrificial layer (20). The sacrificial layer (20) is removed and a conductive layer (28) is formed overlying conductive region (16) and planar layer (22). Conductive layer (28) is used to form a self-aligned TFT device (10) via the formation of a source region (33) and a drain region (34) adjacent an aligned plug region (32).
摘要:
A thin-film transistor and SRAM memory cell include thin-film source and drain regions (12, 14) separated by an opening (22) and overlying and insulating layer (11). A thin-film channel layer (16) overlies the thin-film source and drain regions (12, 14) and a portion of the insulating layer (11) exposed by the opening (22). A thin-film gate electrode (20) is positioned in the opening (22) and defines a thin-film channel region (24) in the thin-film channel layer (16). The thin-film gate electrode (20) is separated from the thin-film channel region (24) by a gate dielectric layer (18). The thin-film channel region (24) extends along vertical wall surfaces (26, 28) of the thin-film source and drain regions (12, 14) providing an extended channel length for the thin-film transistor.
摘要:
An under-gated thin film transistor (54) having low leakage current and a high on/off current ratio is formed using a composite layer (40) of semiconducting material. In one embodiment a composite layer (40) of semiconducting layer is formed by depositing two distinct layers (34, 38) of semiconducting material over the transistor gate electrode (18). The composite layer (40) is then patterned and implanted with ions to form a source region (46) and a drain region (48) within the composite layer (40), and to define a channel region (50) and an offset drain region (52) within the composite layer (40).
摘要:
A self-aligned, under-gated TFT device (10). A base layer (14) is formed. A conductive layer (16) is formed overlying the base layer (14). A dielectric layer (18) is formed overlying the conductive layer (16). A sacrificial layer (20) is formed overlying the dielectric layer (18). The layers (16, 18, and 20) are etched to form a "pillar" region. A dielectric layer (22) and a planar layer (24), which both overlie the "pillar" region, are etched back to form a substantially planar surface and expose a top portion of the sacrificial layer (20). The sacrificial layer (20) is removed and a conductive layer (28) is formed overlying conductive region (16) and planar layer (22). Conductive layer (28) is used to form a self-aligned TFT device (10) via the formation of a source region (33) and a drain region (34) adjacent an aligned plug region (32).
摘要:
An interconnect structure is formed having a substrate (10). A conductive layer (14) is formed overlying the substrate (10). A conductive layer (18) is formed overlying the conductive layer (14). An opening (19) is etched through the conductive layer (18), exposing a top portion of conductive layer (14), and forming a sidewall of the conductive layer (18). An selective isotropic etch procedure is used to laterally recess the sidewall of the conductive layer (18). A sidewall spacer (22) is formed adjacent the sidewall of the conductive layer (18). A conductive layer (24) is formed within opening (19) and adjacent the spacer (22) to form an interconnection between conductive layers (24 and 14). The interconnection is self-aligned, and conductive layer (18) is reliably isolated from the interconnect due to the lateral recessed sidewall of the conductive layer (18).
摘要:
An interconnect structure is formed having a substrate (10). A conductive layer (14) is formed overlying the substrate (10). A conductive layer (18) is formed overlying the conductive layer (14). An opening (19) is etched through the conductive layer (18), exposing a top portion of conductive layer (14), and forming a sidewall of the conductive layer (18). An selective isotropic etch procedure is used to laterally recess the sidewall of the conductive layer (18). A sidewall spacer (22) is formed adjacent the sidewall of the conductive layer (18). A conductive layer (24) is formed within opening (19) and adjacent the spacer (22) to form an interconnection between conductive layers (24 and 14). The interconnection is self-aligned, and conductive layer (18) is reliably isolated from the interconnect due to the lateral recessed sidewall of the conductive layer (18).
摘要:
An under-gated thin film transistor (54) having low leakage current and a high on/off current ratio is formed using a composite layer (40) of semiconducting material. In one embodiment a composite layer (40) of semiconducting layer is formed by depositing two distinct layers (34, 38) of semiconducting material over the transistor gate electrode (18). The composite layer (40) is then patterned and implanted with ions to form a source region (46) and a drain region (48) within the composite layer (40), and to define a channel region (50) and an offset drain region (52) within the composite layer (40).
摘要:
Three dimensionally integrated semiconductor systems include a photoactive device operationally coupled with a current/voltage converter on a semiconductor-on-insulator (SeOI) substrate. An optical interconnect is operatively coupled to the photoactive device. A semiconductor device is bonded over the SeOI substrate, and an electrical pathway extends between the current/voltage converter and the semiconductor device bonded over the SeOI substrate. Methods of forming such systems include forming a photoactive device on an SeOI substrate, and operatively coupling a waveguide with the photoactive device. A current/voltage converter may be formed over the SeOI substrate, and the photoactive device and the current/voltage converter may be operatively coupled with one another. A semiconductor device may be bonded over the SeOI substrate and operatively coupled with the current/voltage converter.
摘要:
A circuit made on a semiconductor-on-insulator substrate. The circuit includes a first transistor having a first channel, a second transistor having a second channel, with the transistors provided in serial association between first and second terminals for applying a power supply potential, each of the transistors comprising a drain region and a source region in the thin layer, a channel extending between the source region and the drain region, and a front control gate located above the channel. Each transistor has a back control gate formed in the base substrate below the channel of the transistor and capable of being biased in order to modulate the threshold voltage of the transistor. At least one of the transistors is configured for operating in a depletion mode under the action of a back gate signal which will sufficiently modulate its threshold voltage.
摘要:
A circuit made on a semiconductor-on-insulator substrate. The circuit includes a first transistor having a first channel, a second transistor having a second channel, with the transistors provided in serial association between first and second terminals for applying a power supply potential, each of the transistors comprising a drain region and a source region in the thin layer, a channel extending between the source region and the drain region, and a front control gate located above the channel. Each transistor has a back control gate formed in the base substrate below the channel of the transistor and capable of being biased in order to modulate the threshold voltage of the transistor. At least one of the transistors is configured for operating in a depletion mode under the action of a back gate signal which will sufficiently modulate its threshold voltage.