摘要:
An actuator control system includes a controller and a buck-boost circuit. The controller is configured to direct power from a power source to an actuator. The actuator is coupled to a control device to apply a force related to operation of a vehicle. The buck-boost circuit is configured to direct excess power generated by the actuator to an energy storage device when an actuator power level satisfies an anticipated power level.
摘要:
Systems and methods are provided for capturing and using power generated by the application of an external force or by an inertial force on a vehicle control device that back-drive or forward-drive an actuator coupled to the control device. An actuator is coupled to a control device configured to apply a force related to operation of a vehicle. A bus is configured to conduct power to the actuator. An actuator control system is configured to receive power from a power source via an electrical bus and direct the power to the actuator. The actuator control system is also configured to monitor an actuator power level to determine when the actuator power level does not meet an anticipated power level. When the actuator power level exceeds the anticipated power level, the excess power generated is directed to an energy storage device. When the actuator power level is less than the anticipated power level, supplemental power is distributed from the energy storage device to the bus.
摘要:
An electromechanical actuator incorporates a drive housing connected to a motor for rotational motion. A screw is employed with an actuating nut having protruding engagement bosses and a drive coupling is concentrically received within the drive housing having segments equal to the number of engagement bosses. Each segment has a cavity to receive a respective one of the engagement bosses and the segments are cooperatively positionable from an active position radially compressed to engage the bosses within the cavities to a released position radially expanded to disengage the bosses from the cavities.
摘要:
Initial optical signals propagate downstream through a primary transmitting GRIN lens and a primary receiving GRIN lens that are joined at an optical interface. A secondary transmitting GRIN lens, or another type of optical device, is joined to the primary receiving GRIN lens at the optical interface, and a secondary receiving GRIN lens, or another type of optical device, is joined to the primary transmitting GRIN lens at the optical interface. Extracted optical signals are transmitted from the primary transmitting GRIN lens to the secondary receiving GRIN lens and, inserted optical signals are transmitted from the secondary transmitting GRIN lens into the primary receiving GRIN lens. The secondary GRIN lenses are angularly displaced from one another so that extracted optical signals consist solely of the information of the initial optical signals and an extracted portion of the optical energy of the initial optical signals. A composite optical signal, which propagates downstream through the receiving GRIN lens, includes the information of the initial optical signals, the unextracted portion of the optical energy of the initial optical signals, and all of the inserted optical signals. The secondary GRIN lenses are substantially smaller than the primary GRIN lenses, such that the secondary GRIN lenses have a minimal impact upon the transmission of the initial optical signals from the primary transmitting GRIN lens to the primary receiving GRIN lens.
摘要:
A fiber optical "T" coupler for sending and receiving signals on the same fiber optic element to facilitate ease of building and operating fiber optic communications networks. The fiber optical "T" coupler has three GRIN lenses, a receiving GRIN lens, a transmitting GRIN lens and a focusing GRIN lens, each having a focusing end and a collimating end. The transmitting GRIN lens' and the focusing GRIN lens' collimating ends are attached to and optically connected to the collimating end of the receiving GRIN lens. Fiber optic elements can be connected to the GRIN lenses focused ends for receiving signals to be collimated or for sending focused signals from the collimated end of the GRINs. Thus a light emitting transducer sends light to the transmitting GRIN lens and through the receiving GRIN lens to a fiber optic element. The same fiber optic element brings light to the receiving GRIN lens which is optically connected to the focusing GRIN lens which focuses the light on a light detecting transducer.
摘要:
An augmented power converter may include a motor drive circuit. The motor drive circuit may include a motor drive transformer to convert a two-phase DC voltage to a three-phase output voltage for operating an electrical device. The motor drive circuit may also include a power control component for each phase of the two-phase voltage.
摘要:
The optical coupler includes first, second and third port assemblies and a deflecting element. The first port assembly receives a first optical signal, the first port assembly including a first lensing element. The second port assembly emits a predetermined, transmitted portion of the first optical signal. The second port assembly includes a second lensing element. The deflecting element is positioned between the first and second port assemblies. The third port assembly includes a third lensing element. The deflecting element and the third port assembly are so positioned and arranged such that a deflected portion of the first optical signal is deflected from the deflecting element and directed through the third port assembly. The predetermined, transmitted portion of the first optical signal is directed through the second port assembly without being deflected by the deflecting element. The transmitted and deflected portions of the first optical signal are expanded and collimated while passing through the optical coupler by appropriate positioning of the lensing elements to provide efficient and accurate control of the first optical signal.
摘要:
In an optic fiber, different first and second optical signals are transmitted through optic fiber in the first direction. The first optical signal may be infrared, whereas the second optical signal may be visible, so as to provide a visible indication that optical energy is propagating through the optic fiber. The optic fiber is connected to an optical system that includes a transceiving GRIN lens, a receiving GRIN lens and a plurality of transmitting GRIN lenses that are smaller than the receiving GRIN lens. The transceiving GRIN lens has opposite first and second ends, collimates optical signals propagating therethrough and emitted via the first end, and focuses optical signals propagating therethrough and emitted via the second end. The receiving GRIN lens has opposite first and second ends, and focuses optical signals propagating therethrough and emitted via the second end thereof. The first end of the receiving GRIN lens is optically connected to the first end of the transceiving GRIN lens such that the transceiving GRIN lens is operative for transferring collimated optical energy to the second GRIN lens. Each of the transmitting GRIN lenses has opposite first and second ends, and collimates optical signals propagating therethrough and emitted via the first end thereof. The first end of each of the transmitting GRIN lenses is optically connected to the first end of the transceiving GRIN lens such that the transceiving GRIN lens is operative for receiving collimated optical signals from each of the transmitting GRIN lenses.
摘要:
This invention relates to modulating light transmitted in an optic fiber. A passive light modulating device such as a polarizing material, a filter, or an attenuator is placed between two facing collimated ends of GRIN lenses attached to two optic fibers. The passive light modulating device modulates the light in the desired manner as it is transmitted between the two optic fibers. An active light modulating device such as a switch or an amplifier may also be used between the two GRIN lenses to actively modify the transmitted light.
摘要:
A method for forming an electromechanical actuator that involves using at least one motor module engageable with an output ram for controllably translating the output ram along a linear axis of the output ram. A torque sensing adaptive control (TSAC) system is used for monitoring motor module torque within the motor module and generating a disengagement command signal. The disengagement command signal is used to initiate disengagement of the motor module from the output ram when the torque within the motor module is outside an allowable motor module torque range.