Abstract:
The invention provides a method for making a curable epoxysilicone composition through the hydrosilation reaction between an ethylenically unsaturated epoxide and an SiH-containing silicone to produce an epoxysilicone product, and catalyzed by a quaternary ammonium, phosphonium or arsonium hexahaloplatinate which does not promote the oxirane ring-opening reaction of either the ethylenically unsaturated epoxide starting material or the epoxysilicone product. The invention also provides for a curable epoxysilicone composition made by the above method.
Abstract:
The present invention is based on the discovery that various metal catalysts will catalyze the ring opening polymerization of epoxides to yield polyethers. The present invention therefore provides a method of making a polymeric product by ring-opening polymerization of heterocyclic epoxide monomer including the steps of preparing a mixture comprised of a catalyst; a Si--H containing compound; and at least one compound which is a heterocyclic epoxide containing monomer; and reacting the mixture at a temperature effective to promote ring-opening polymerization of the at least one compound to produce a polymeric product, preferably at room temperature.The present invention additionally provides for the silicone-polyether compositions created by this method.
Abstract:
The present invention discloses the use of certain silicon hydrides having at least two hydrogen atoms attached to silicon in particular heat curable platinum catalyzed silicone coating formulations, which permits the use of a reduced level of inhibitor and improved cure performance.
Abstract:
The invention provides a method for making a curable epoxysilicone composition through the hydrosilation reaction between an ethylenically unsaturated epoxide and an SiH-containing silicone to produce an epoxysilicone product, and catalyzed by a rhodium containing selective catalyst which does not promote the oxirane ring-opening reaction of either the ethylenically unsaturated epoxide starting material or the epoxysilicone product. The rhodium containing selective catalyst has the general formula[R.sub.4 M].sup.+ [RhCl.sub.3 Br].sup.-wherein M is phosphorous or nitrogen and R is an organic radical comprising a C.sub.1-18 linear alkyl radical, aryl, alkaryl or aralkyl radical.
Abstract:
The invention provides a method for making a curable epoxysilicone composition through the hydrosilation reaction between an ethylenically unsaturated epoxide and an SiH-containing silicone to produce an epoxysilicone product, and catalyzed by a rhodium containing selective catalyst which does not promote the oxirane ring-opening reaction of either the ethylenically unsaturated epoxide starting material or the epoxysilicone product. The invention also provides for a curable epoxysilicone composition made by the above method for the catalyst, and two methods of making the catalyst.
Abstract:
The present invention relates to a curable polyvinyl ether composition created using a novel catalyst system for the synthesis of polyethers from vinyl ether monomers or polymers. This catalyst system comprises a platinum complex catalyst and silicon hydride cocatalyst. The invention also relates to a method of producing polyethers from vinyl ether monomers or polymers using the above-mentioned catalyst system.
Abstract:
The invention provides a method for making an epoxysilicone compound through the hydrosilation addition reaction between an ethylenically unsaturated epoxide and an SiH-containing silicon to produce an epoxysilicone product, and catalyzed by a regiospecific hydrosilation catalyst which does not also promote an oxirane ring-opening polymerization reaction in either the ethylenically unsaturated epoxide starting compound or in the epoxysilicone hydrosilation reaction product. The invention also provides a hydrosilation catalyst with the above catalytic properties as well as an epoxysilicone composition made by the above method.
Abstract:
Enhancement of the rates of cationic polymerizations initiated by onium salts has been achieved through the use of oligomeric and polymeric electron-transfer photosensitizers derived from a polymerizable compound substituted with a polynuclear aromatic group, including epoxides, oxetanes, and ethylenically unsaturated compounds. The polymerizable compound is substituted with residues derived from anthracene, naphthalene, perylene, pyrene, fluorene, carbazole, indole, benzocarbazole, acridone, phenothiazine, and thianthrene, particularly carbazole.
Abstract:
A process for the selective monoadditon of an olefin or acetylene to a siloxane which contains two reactive Si--H bonds to produce a product in which only one of the two Si--H functions has added across the olefin or acetylene is disclosed. A process for making unsymmetrical siloxanes from symmetrical dihydrosiloxanes and products of both of these processes are also disclosed. Products are represented by the formula I in which R.sup.1 and R.sup.4 are different: ##STR1##
Abstract:
A catalyst: mixture for ring-opening polymerization of heterocyclic monomers and polymers includes a catalyst composed of a cobalt carbonyl complex; and a cocatalyst composed of at least one Si-H-containing compound. A curable composition, which may be a two-part kit, is also disclosed and includes the catalyst; the cocatalyst; and at least one polymerizable compound which is a monomer or polymer containing a heterocyclic ring. A method of producing a polymeric product by ring-opening polymerization of heterocyclic monomers and polymers is also disclosed which includes the steps of preparing a mixture including a catalyst composed of a cobalt carbonyl complex, a cocatalyst composed of at least one Si-H-containing compound, and at least one polymerizable compound which is a monomer or polymer containing a heterocyclic ring; and reacting the mixture, preferably at about room temperature, to promote ring-opening polymerization of the at least one polymerizable compound to produce the polymeric product.