摘要:
This invention is generally in the field of improved methods for the localized delivery of heat and the localized imaging of biological materials. The delivery may be in vitro or in vivo and is useful for the localized treatment of cancer, inflammation or other disorders involving overproliferation of tissue. The method is also useful for diagnostic imaging. The method involves localized induction of hyperthermia in a cell or tissue by delivering nanoparticles to said cell or tissue and exposing the nanoparticles to an excitation source under conditions wherein they emit heat.
摘要:
The present invention provides nanoshell particles (“nanoshells”) for use in biosensing applications, along with their manner of making and methods of using the nanoshells for in vitro and in vivo detection of chemical and biological analytes, preferably by surface enhanced Raman light scattering. The preferred particles have a non-conducting core and a metal shell surrounding the core. For given core and shell materials, the ratio of the thickness (i.e., radius) of the core to the thickness of the metal shell is determinative of the wavelength of maximum absorbance of the particle. By controlling the relative core and shell thicknesses, biosensing metal nanoshells are fabricated which absorb light at any desired wavelength across the ultraviolet to infrared range of the electromagnetic spectrum. The surface of the particles are capable of inducing an enhanced SERS signal that is characteristic of an analyte of interest. In certain embodiments a biomolecule is conjugated to the metal shell and the SERS signal of a conformational change or a reaction product is detected.
摘要:
A thermally sensitive polymer-particle composite that absorbs electromagnetic radiation, and uses the absorbed energy to trigger the delivery of a chemical is disclosed. Metal nanoshells are nanoparticulate materials that are suitable for use in the present composites and can be made according to a process that includes optically tuning or tailoring their maximum optical absorption to any desired wavelength primarily by altering the ratio of the core diameter to the shell thickness. Preferred nanoshells are selected that strongly absorb light in the near-infrared and thus produce heat. These nanoshells are combined with a temperature-sensitive material to provide an implantable or injectable material for modulated drug delivery via external exposure to near-IR light. This invention provides a means to improve the quality of life for persons requiring multiple injections of a drug, such as diabetes mellitus patients.
摘要:
This invention is generally in the field of improved methods for the localized delivery of heat and the use thereof for the repair of tissue. The method involves localized induction of hyperthermia in tissue or materials by delivering nanoparticles to the tissue or materials and exposing the nanoparticles to an excitation source under conditions wherein they emit heat. The generation of heat effects the joining of the tissue or materials.
摘要:
A thermally sensitive polymer-particle composite that absorbs electromagnetic radiation, and uses the absorbed energy to trigger the delivery of a chemical is disclosed. Metal nanoshells are nanoparticulate materials that are suitable for use in the present composites and can be made according to a process that includes optically tuning or tailoring their maximum optical absorption to any desired wavelength primarily by altering the ratio of the core diameter to the shell thickness. Preferred nanoshells are selected that strongly absorb light in the near-infrared and thus produce heat. These nanoshells are combined with a temperature-sensitive material to provide an implantable or injectable material for modulated drug delivery via external exposure to near-IR light. This invention provides a means to improve the quality of life for persons requiring multiple injections of a drug, such as diabetes mellitus patients.
摘要:
Hydrogels releasing or producing NO, most preferably polymerizable biodegradable hydrogels capable of releasing physiological amounts of NO for prolonged periods of time, are applied to sites on or in a patient in need of treatment thereof for disorders such as restenosis, thrombosis, asthma, wound healing, arthritis, penile erectile dysfunction or other conditions where NO plays a significant role. The polymeric materials can be formed into films, coatings, or microparticles for application to medical devices, such as stents, vascular grafts and catheters. The polymeric materials can also be applied directly to biological tissues and can be polymerized in situ. The hydrogels are formed of macromers, which preferably include biodegradable regions, and have bound thereto groups that are released in situ to elevate or otherwise modulate NO levels at the site where treatment is needed. The macromers can form a homo or hetero-dispersion or solution, which is polymerized to form a hydrogel material, that in the latter case can be a semi-interpenetrating network or interpenetrating network. Compounds to be released can be physically entrapped, covalently or ionically bound to macromer, or actually form a part of the polymeric material. The hydrogel can be formed by ionic and/or covalent crosslinking. Other active agents, including therapeutic, prophylactic, or diagnostic agents, can also be included within the polymeric material.
摘要:
Novel nanoparticulate compositions of luminescent probes, as well as methods of using such compositions and systems comprising such compositions are provided. One such composition comprises at least one probe comprising a quantum dot, at least one metal nanoparticle, and at least one tether that is attached to the quantum dot and to the at least one metal nanoparticle. One such method comprises providing at least one such probe, introducing the at least one probe into a subject; and detecting luminescence from the at least one probe in the subject. One such system comprises at least one such probe and a detector capable of detecting luminescence from the quantum dot, wherein the detector is positioned in relation to the at least one probe such that luminescence can be detected.
摘要:
Hydrogels releasing or producing NO, most preferably photopolymerizable biodegradable hydrogels capable of releasing physiological amounts of NO for prolonged periods of time, are applied to sites on or in a patient in need of treatment thereof for disorders such as restenosis, thrombosis, asthma, wound healing, arthritis, penile erectile dysfunction or other conditions where NO plays a significant role. The hydrogels are typically formed of macromers, which preferably include biodegradable regions, and have bound thereto groups that are released in situ to elevate or otherwise modulate NO levels at the site where treatment is needed. The macromers can form a homo or hetero-dispersion or solution, which is polymerized to form a hydrogel material, that in the latter case can be a semi-interpenetrating network or interpenetrating network. Compounds to be released can be physically entrapped, covalently or ionically bound to macromer, or actually form a part of the polymeric material. The hydrogel can be formed by ionic and/or covalent crosslinking. Other active agents, including therapeutic, prophylactic, or diagnostic agents, can also be included within the polymeric material.
摘要:
Methods of fabricating a substantially interconnected model vasculature, as well as compositions formed from such methods are provided. In some embodiments, the methods may comprise forming a non-woven fiber network comprising a plurality of fibers and a void space; backfilling the void space of the fiber network; and removing the fibers to form a substantially interconnected vascular network.
摘要:
Methods of fabricating a substantially interconnected model vasculature, as well as compositions formed from such methods are provided. In some embodiments, the methods may comprise forming a non-woven fiber network comprising a plurality of fibers and a void space; backfilling the void space of the fiber network; and removing the fibers to form a substantially interconnected vascular network.