摘要:
This invention relates to an improved catalyst, comprising a carbon support having a noble metal at its surface, for use in catalyzing liquid phase oxidation reactions, especially in an acidic oxidative environment and in the presence of solvents, reactants, intermediates, or products which solubilize noble metals; a process for the preparation of the improved catalyst; a liquid phase oxidation process using such a catalyst wherein the catalyst exhibits improved resistance to noble metal leaching, particularly in acidic oxidative environments and in the presence of solvents, reactants, intermediates, or products which solubilize noble metals; and a liquid phase oxidation process in which N-(phosphonomethyl)iminodiacetic acid (i.e., “PMIDA”) or a salt thereof is oxidized to form N-(phosphonomethyl)glycine (i.e., “glyphosate”) or a salt thereof using such a catalyst wherein the oxidation of the formaldehyde and formic acid by-products into carbon dioxide and water is increased.
摘要:
This invention relates to an improved catalyst, comprising a carbon support having a noble metal at its surface, for use in catalyzing liquid phase oxidation reactions, especially in an acidic oxidative environment and in the presence of solvents, reactants, intermediates, or products which solubilize noble metals; a process for the preparation of the improved catalyst; a liquid phase oxidation process using such a catalyst wherein the catalyst exhibits improved resistance to noble metal leaching, particularly in acidic oxidative environments and in the presence of solvents, reactants, intermediates, or products which solubilize noble metals; and a liquid phase oxidation process in which N-(phosphonomethyl)iminodiacetic acid (i.e., “PMIDA”) or a salt thereof is oxidized to form N-(phosphonomethyl)glycine (i.e., “glyphosate”) or a salt thereof using such a catalyst wherein the oxidation of the formaldehyde and formic acid by-products into carbon dioxide and water is increased.
摘要:
This invention relates to an improved catalyst, comprising a carbon support having a noble metal at its surface, for use in catalyzing liquid phase oxidation reactions, especially in an acidic oxidative environment and in the presence of solvents, reactants, intermediates, or products which solubilize noble metals; a process for the preparation of the improved catalyst; a liquid phase oxidation process using such a catalyst wherein the catalyst exhibits improved resistance to noble metal leaching, particularly in acidic oxidative environments and in the presence of solvents, reactants, intermediates, or products which solubilize noble metals; and a liquid phase oxidation process in which N-(phosphonomethyl)iminodiacetic acid (i.e., “PMIDA”) or a salt thereof is oxidized to form N-(phosphonomethyl)glycine (i.e., “glyphosate”) or a salt thereof using such a catalyst wherein the oxidation of the formaldehyde and formic acid by-products into carbon dioxide and water is increased.
摘要:
This invention relates to the field of heterogeneous catalysis, and more particularly to oxidation catalysts including carbon supports having deposited thereon a noble metal and one or more optional promoters and to methods for their preparation. The invention further relates to the field of heterogeneous catalytic oxidation reactions, including the preparation of secondary amines by the catalytic oxidation of tertiary amines, such as the oxidation of an N-(phosphonomethyl)iminodiacetic acid to produce an N-(phosphonomethyl)glycine product.
摘要:
A nanocomposite catalyst includes a support, a multiplicity of nanoscale metal oxide clusters coupled to the support, and one or more metal atoms coupled to each of the nanoscale metal oxide clusters. Fabricating a nanocomposite catalyst includes forming nanoscale metal oxide clusters including a first metal on a support, and depositing one or more metal atoms including a second metal on the nanoscale metal oxide clusters. The nanocomposite catalyst is suitable for catalyzing reactions such as CO oxidation, water-gas-shift, reforming of CO2 and methanol, and oxidation of natural gas.
摘要:
A nanocomposite catalyst includes a support, a multiplicity of nanoscale metal oxide clusters coupled to the support, and one or more metal atoms coupled to each of the nanoscale metal oxide clusters. Fabricating a nanocomposite catalyst includes forming nanoscale metal oxide clusters including a first metal on a support, and depositing one or more metal atoms including a second metal on the nanoscale metal oxide clusters. The nanocomposite catalyst is suitable for catalyzing reactions such as CO oxidation, water-gas-shift, reforming of CO2 and methanol, and oxidation of natural gas.
摘要:
A nanocatalyst including single atoms of platinum dispersed on a nanoscale metal oxide, and the nanocatalyst comprises 0.01 wt % to 1 wt % platinum. Preparing the nanocatalyst includes combining a solution comprising a nanoscale metal oxide and a compound containing a Group 10 metal to yield a mixture, aging the mixture for a length of time, filtering the mixture to yield a solid, washing the solid to eliminate water soluble anions, and calcining the solid to yield a nanocatalyst including single atoms or clusters of atoms of the Group 10 metal on the nanoscale metal oxide.
摘要:
A nanocomposite catalyst includes a support, a multiplicity of nanoscale metal oxide clusters coupled to the support, and one or more metal atoms coupled to each of the nanoscale metal oxide clusters. Fabricating a nanocomposite catalyst includes forming nanoscale metal oxide clusters including a first metal on a support, and depositing one or more metal atoms including a second metal on the nanoscale metal oxide clusters. The nanocomposite catalyst is suitable for catalyzing reactions such as CO oxidation, water-gas-shift, reforming of CO2 and methanol, and oxidation of natural gas.
摘要:
A nanocatalyst including single atoms of platinum dispersed on a nanoscale metal oxide, and the nanocatalyst comprises 0.01 wt % to 1 wt % platinum. Preparing the nanocatalyst includes combining a solution comprising a nanoscale metal oxide and a compound containing a Group 10 metal to yield a mixture, aging the mixture for a length of time, filtering the mixture to yield a solid, washing the solid to eliminate water soluble anions, and calcining the solid to yield a nanocatalyst including single atoms or clusters of atoms of the Group 10 metal on the nanoscale metal oxide.
摘要:
A nanocatalyst including single atoms of platinum dispersed on a nanoscale metal oxide, and the nanocatalyst comprises 0.01 wt % to 1 wt % platinum. Preparing the nanocatalyst includes combining a solution comprising a nanoscale metal oxide and a compound containing a Group 10 metal to yield a mixture, aging the mixture for a length of time, filtering the mixture to yield a solid, washing the solid to eliminate water soluble anions, and calcining the solid to yield a nanocatalyst including single atoms or clusters of atoms of the Group 10 metal on the nanoscale metal oxide.