摘要:
Provided are a dye-sensitized solar cell and a method for manufacturing the dye-sensitized solar cell using a carbon nanotube (CNx) doped with nitrogen, wherein the dye-sensitized solar cell using the carbon nanotube (CNx) doped with nitrogen has an improved conductivity and open circuit voltage as compared to those using the carbon nanotube (CNT) and also a high connectivity between a transparent electrode and an oxide semiconductor
摘要:
Disclosed is a method for patterning a nanomaterial using solution evaporation. More particularly, the method for patterning a nanomaterial using solution evaporation includes; coating the nanomaterial with a polymer material and uniformly dispersing the coated nanomaterial in a solvent to prepare a solution containing the nanomaterial, and pouring the nanomaterial-containing solution on a substrate, enabling the nanomaterial to be patterned after evaporation of the solvent.
摘要:
The present invention relates to a method for manufacturing a transition metal-carbon nanotube hybrid material using nitrogen as a medium. The present invention is characterized in that nitrogen-added carbon nanotube is grown in the presence of metal catalyst particles by reacting an hydrocarbon gas with a nitrogen gas by a chemical vapor deposition (CVD) and a transition metal-carbon nanotube hybrid material where a transition metal is uniformly attached to the entire carbon nanotube structure in which nitrogen with a great chemical reactivity is added as heterogeneous elements is chemically manufactured. Therefore, the present invention does not use an acid treatment required to attach transition-metal atoms to the carbon-nanotube, a surface treating process using a surfactant and the like and an inhibitor for preventing the coagulation of the transition metal so that a simplification of the process is obtained and the method is an environment-friendly method. The transition metal-carbon nanotube hybrid material manufactured by the above can be applied variously as a hydrogen storage material, a catalyst material, an electric field emission device and an electrode material.
摘要:
The present inventions are a method for production of hydrogen which decomposes water into hydrogen by oxidation of metals only when the metals are exposed to the water, while preventing oxidation of pure metal nanoparticles using block copolymers and, in addition, hydrogen produced by the method described above. The method of the present invention has advantages of improved convenience and simplicity, achieves a preferable approach for hydrogen storage because the metal nanoparticles enclosed by the block copolymer have the ease of delivery and reaction thereof. Additionally, the method of the present invention only using water and the metal is considered eco-friendly and useful in industrial energy applications.
摘要:
The present inventions are a method for production of hydrogen which decomposes water into hydrogen by oxidation of metals only when the metals are exposed to the water, while preventing oxidation of pure metal nanoparticles using block copolymers and, in addition, hydrogen produced by the method described above. The method of the present invention has advantages of improved convenience and simplicity, achieves a preferable approach for hydrogen storage because the metal nanoparticles enclosed by the block copolymer have the ease of delivery and reaction thereof. Additionally, the method of the present invention only using water and the metal is considered eco-friendly and useful in industrial energy applications.
摘要:
Disclosed are a nanocrater catalyst in metal nanoparticles with a nanocrater form of hole structure in center of the catalyst which is useful for manufacturing nano-sized materials and/or articles with desired structure and characteristics, a preparation method thereof including a plasma etching and chemical etching process (“PTCE process”), and nano-sized materials and/or articles manufactured by using the nanocrater catalyst in metal nanoparticles.
摘要:
Disclosed are a nanocrater catalyst in metal nanoparticles with a nanocrater form of hole structure in center of the catalyst which is useful for manufacturing nano-sized materials and/or articles with desired structure and characteristics, a preparation method thereof including a plasma etching and chemical etching process (“PTCE process”), and nano-sized materials and/or articles manufactured by using the nanocrater catalyst in metal nanoparticles.
摘要:
Disclosed are a double metal-carbon nanotube hybrid catalyst comprising at least two of transition metals selected from a group consisting of Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, Re, Os, Ir and Pt which are distributed in the catalyst. The double metal-carbon nanotube hybrid catalyst contains at least two different transition metals with high catalytic activity and may generate hydrogen from an aqueous ammonia-borane (NH3BH3) solution at a high speed and a method for preparation of a double metal-carbon nanotube hybrid catalyst.
摘要:
The present invention relates to a method for manufacturing a transition metal-carbon nanotube hybrid material using nitrogen as a medium. The present invention is characterized in that nitrogen-added carbon nanotube is grown in the presence of metal catalyst particles by reacting an hydrocarbon gas with a nitrogen gas by a chemical vapor deposition (CVD) and a transition metal-carbon nanotube hybrid material where a transition metal is uniformly attached to the entire carbon nanotube structure in which nitrogen with a great chemical reactivity is added as heterogeneous elements is chemically manufactured. Therefore, the present invention does not use an acid treatment required to attach transition-metal atoms to the carbon-nanotube, a surface treating process using a surfactant and the like and an inhibitor for preventing the coagulation of the transition metal so that a simplification of the process is obtained and the method is an environment-friendly method. The transition metal-carbon nanotube hybrid material manufactured by the above can be applied variously as a hydrogen storage material, a catalyst material, an electric field emission device and an electrode material.
摘要:
Disclosed is a method for patterning a nanomaterial using solution evaporation. More particularly, the method for patterning a nanomaterial using solution evaporation includes; coating the nanomaterial with a polymer material and uniformly dispersing the coated nanomaterial in a solvent to prepare a solution containing the nanomaterial, and pouring the nanomaterial-containing solution on a substrate, enabling the nanomaterial to be patterned after evaporation of the solvent.