Abstract:
The invention relates to a method for diagnosing a disease state mediated by pathogenic cells, said method comprising the steps of administering to a patient a composition comprising a conjugate or complex of the general formula Ab-X wherein the group Ab comprises a ligand that binds to the pathogenic cells and the group X comprises an imaging agent, and detecting the pathogenic cells that express a receptor for the ligand using mutiphoton in vivo flow cytometry.
Abstract:
A method of noninvasively imaging tissue within a body includes irradiating the tissue using an imaging laser including a Raman-based laser tuner, the radiation including a plurality of laser pulses, each having energy greater than 100 mJ; receiving an acoustic signal generated by vibrational energy in the tissue, wherein the vibrational energy is a result of selective overtone excitation of molecules in the tissue by the radiation; and automatically converting the acoustic signal to an image representative of the tissue using a processor. An imaging system includes an imaging laser configured to irradiate tissue with a plurality of laser pulses using a Raman-based laser tuner. An ultrasonic transducer receives an acoustic signal generated by vibrational energy in the tissue due to overtone excitation by the radiation. A processor is configured to automatically produce an image representative of the tissue using the received acoustic signal.
Abstract:
The present disclosure describes hydrophobically modified nanoparticles and polymeric nanostructures that can be utilized to for the treatment of neuronal injury or neuronal disease in an affected patient, along with methods of forming and using the nanoparticles and nanostructures. Furthermore, the nanoparticles and nanostructures are designed as “dual action” compositions to treat neuronal injury and neuronal disease via repair of damaged membrane and suppression of intracellular inflammation.
Abstract:
Systems and methods are disclosed for detecting a coherent anti-Stokes Raman scattering (CARS) signal from a microscopic sample in an epi-direction. In an embodiment, the system includes at least two sources having a pump source for generating a pump field at the pump frequency, a Stoke source for generating a Stoke field at the Stoke frequency that is different from the pump frequency, optics (64) for directing the pump and Stoke beams (60) in a collinear fashion through a focusing lens (66) toward a common focal spot in a sample (70), and detector optics that images the CARS in epi-direction, which is generated by the interaction of the pump and Stoke fields (60) with the sample (70) and is collected by the same focusing lens (66), towards an epi-detector (78).
Abstract:
An imaging system, including a radiation source configured to output a signal that can non-invasively and selectively cause overtone excitation of molecules based on a predetermined chemical bond, and an ultrasound detector configured to non-invasively detect an acoustic signal generated by vibrational energy caused by the selective overtone excitation of the molecules and further configured to convert the acoustic signal into an image.
Abstract:
The invention relates to a method for diagnosing a disease state mediated by pathogenic cells, said method comprising the steps of administering to a patient a composition comprising a conjugate or complex of the general formula Ab-X wherein the group Ab comprises a ligand that binds to the pathogenic cells and the group X comprises an imaging agent, and detecting the pathogenic cells that express a receptor for the ligand using mutiphoton in vivo flow cytometry.
Abstract:
A system for measuring an sample includes an illumination source providing electromagnetic radiation pulses at a selected temporal frequency. A microscope focuses the radiation to interact with the sample and produce resultant electromagnetic radiation. A disperser disperses wavelengths of the resultant radiation onto optical sensors, and respective resonant amplifiers amplify signals having the selected temporal frequency. Optical detection apparatus includes the optical sensors, resonant amplifiers, and disperser. The resonant amplifiers amplify portion(s) of their inputs having a selected temporal frequency and attenuate other portion(s). A method of analyzing constituents of a sample includes contemporaneously irradiating the sample with narrowband light and broadband light, the optical power of either modulated at a selected temporal frequency; dispersing wavelengths of resultant light across the optical detectors; and filtering respective signals from the optical detectors to provide spectrum data including signals corresponding to the selected temporal frequency.
Abstract:
Systems and methods are disclosed for detecting a nonlinear coherent field induced in a microscopic sample. The system includes in an embodiment, a first source for generating a first polarized electromagnetic field at a first frequency and a second source for generating a second polarized electromagnetic field at a second frequency that is different from the first frequency. The system further includes optics for combining the first polarized electromagnetic field and the second polarized electromagnetic field in a collinear fashion such that the difference in polarization angles is &phgr; wherein &phgr; is not equal to zero. The optics further direct the combined electromagnetic field toward a common focal volume. The system also includes a polarization sensitive detector for detecting a nonlinear coherent field that is generated responsive to the first and second polarized electromagnetic fields in the focal volume.
Abstract:
A microsecond-scale stimulated Raman spectroscopic imaging system having a light source, such as a laser output that provides two femtosecond laser beams and a modulator to modulate the laser intensity at frequency between about 1 and about 100 megahertz. The system can further include a medium that chirps the two femtosecond beams to generate a spectral focus in a specimen, and a galvo mirror or resonant mirror pair to scan the two femtosecond beams in two dimension on the specimen. An objective lens can focus the two laser beams into a specimen or sample and a resonant delay scanner configured to produce an optical delay to the pair of chirped beams in said specimen and a tuned amplifier or lock-in amplifier can be used to extract the stimulated Raman-signal shift at the aforementioned modulation frequency.
Abstract:
A method for providing images using a multimodal nonlinear optical microscope is disclosed. The method includes providing a foundation femtosecond laser beam, generating a first femtosecond laser beam and a second femtosecond laser beam corresponding to the foundation femtosecond laser beam, combining the first femtosecond laser beam and the foundation femtosecond laser beam to generate a first combination femtosecond laser beam, and generating a coherent anti-Stokes Raman scattering (CARS) signal based on the first combination femtosecond laser beam. A multimodal nonlinear optical microscopy platform is also disclosed.