摘要:
A first read pass voltage is determined and optimized for cycled memory. One or more starting read pass voltages are determined for one or more dies. The system dynamically calculates a current read pass voltage based on the number of program/erase erase cycles, the first read pass voltage and the respective starting read pass voltage. Data is read from one or more non-volatile storage elements using the calculated current read pass voltage.
摘要:
A first read pass voltage is determined and optimized for cycled memory. One or more starting read pass voltages are determined for one or more dies. The system dynamically calculates a current read pass voltage based on the number of program/erase erase cycles, the first read pass voltage and the respective starting read pass voltage. Data is read from one or more non-volatile storage elements using the calculated current read pass voltage.
摘要:
A group of memory cells of a nonvolatile memory is programmed in parallel in a programming pass with a minimum of verify steps from an erased state to respective target states by a staircase waveform. The memory states are demarcated by a set of increasing demarcation threshold values (V1, . . . , VN). Initially in the programming pass, the memory cells are verified relative to a test reference threshold value. This test reference threshold has a value offset past a designate demarcation threshold value Vi among the set by a predetermined margin. The overshoot of each memory cell when programmed past Vi, to be more or less than the margin can be determined. Accordingly, memory cells found to have an overshoot more than the margin are counteracted by having their programming rate slowed down in a subsequent portion of the programming pass so as to maintain a tighter threshold distribution.
摘要:
Techniques are disclosed herein for programming memory arrays to achieve high program/erase cycle endurance. In some aspects, only selected word lines (WL) are programmed with other WLs remaining unprogrammed. As an example, only the even word lines are programmed with the odd WLs left unprogrammed. After all of the even word lines are programmed and the data block is to be programmed with new data, the block is erased. Later, only the odd word lines are programmed. The data may be transferred to a block that stores multiple bit per memory cell prior to the erase. In one aspect, the data is programmed in a checkerboard pattern with some memory cells programmed and others left unprogrammed. Later, after erasing the data, the previously unprogrammed part of the checkerboard pattern is programmed with remaining cells unprogrammed.
摘要:
Partial speed and full speed programming are achieved for a non-volatile memory system. During a program operation, in a first time period, bit lines of storage elements to be inhibited are pre-charged, while bit line of storage elements to be programmed at a partial speed and bit lines of storage elements to be programmed at a full speed are fixed. In a second time period, the bit lines of storage elements to be programmed at the partial speed are driven higher, while the bit lines of storage elements to be inhibited are floated and the bit line of storage elements to be programmed remain fixed. In a third time period, the bit lines of storage elements to be inhibited are driven higher while the bit lines of the storage elements to be programmed at the partial speed or the full speed are floated so that they couple higher.
摘要:
In a memory system, a programming waveform reduces program noise by using sets of multiple adjacent sub-pulses which have a saw-tooth shape. In a set, an initial sub-pulse steps up from an initial level such as 0 V to a peak level, then steps down to an intermediate level, which is above the initial level. One or more subsequent sub-pulses of the set can step up from an intermediate level to a peak level, and then step back down to an intermediate level. A last sub-pulse of the set can step up from an intermediate level to a peak level, and then step back down to the initial level. A verify operation is performed after the set of sub-pulses. The number of sub-pulses per set can decrease in successive sets until a solitary pulse is applied toward the end of a programming operation.
摘要:
Degradation of non-volatile storage elements is reduced by adaptively adjusting erase-verify levels and program-verify levels. The number of erase pulses, or the highest erase pulse amplitude, needed to complete an erase operation is determined. When the number, or amplitude, reaches a limit, the erase-verify level is increased. As the erase-verify level is increased, the number of required erase pulses decreases since the erase operation can be completed more easily. An accelerating increase in the degradation is thus avoided. One or more program-verify levels can also be increased in concert with changes in the erase-verify level. The one or more program-verify levels can increase by the same increment as the erase-verify level to maintain a constant threshold voltage window between the erased state and a programmed state, or by a different increment. Implementations with binary or multi-level storage elements are provided.
摘要:
Program disturb is reduced in a non-volatile storage system during a program operation for a selected word line by initially using a pass voltage with a lower amplitude on word lines which are adjacent to the selected word line. This helps reduce charge trapping at floating gate edges, which can widen threshold voltage distributions with increasing program-erase cycles. When program pulses of higher amplitude are applied to the selected word line, the pass voltage switches to a higher level to provide a sufficient amount of channel boosting. The switch to a higher pass voltage can be triggered by a specified program pulse being applied or by tracking lower state storage elements until they reach a target verify level. The amplitude of the program voltage steps down when the pass voltage steps up, to cancel out capacitive coupling to the selected storage elements from the change in the pass voltage.
摘要:
A read operation for non-storage elements compensates for floating gate-to-floating gate coupling and effects of program-erase cycles. During programming of a word line WLn+1, the threshold voltages of previously-programmed storage elements on WLn are increased due to coupling. To compensate for the increase, during a subsequent read operation of WLn, different sets of pass voltages are applied to WLn+1 for each control gate read voltage which is applied to WLn. The pass voltages vary in each different set so that they are a function of the control gate read voltage which is applied to WLn. The pass voltages may also be a function of a number of program-erase cycles. A higher amount of compensation is provided by increasing the pass voltages as the number of program-erase cycles increases.
摘要:
Programming time is reduced in a non-volatile memory in a multi-pass programming process. In a first programming pass, high state cells are programmed by a sequence of program pulses to identify fast and slow high state cells, while lower state cells are locked out from programming. Once identified, the fast high state cells are temporarily locked out from programming while the slow high state cells continue being programmed to their final intended state. Further, the program pulses are sharply stepped up to program the slow high state cells. In a second programming pass, the fast high state cells are programmed along with the other, lower state cells, until they all reach their respective intended states. A time savings is realized compared to approaches in which all high state cells are programmed in the first programming pass.