摘要:
A control system for a lithium secondary battery measures a voltage V of a negative electrode that uses silicon oxide as a negative electrode active material, with respect to a lithium reference electrode and a discharge capacity Q of the lithium secondary battery during discharge of the lithium secondary battery; generates a V−dQ/dV curve representing a relationship between dQ/dV, which is a proportion of an amount of change dQ in the discharge capacity Q to an amount of change dV in the voltage V, and the voltage V; calculates an intensity ratio of two peaks appearing on the V−dQ/dV curve for two voltage values in the voltage V; and senses a state of the negative electrode utilizing the intensity ratio.
摘要:
There is provided a control system for a lithium secondary battery that can quantitatively sense a deterioration state inherent in a lithium secondary battery using silicon oxide as a negative electrode active material, that is, the nonuniform reaction state of a negative electrode. A control system for a lithium secondary battery including a positive electrode, a negative electrode using silicon oxide as a negative electrode active material, and a lithium reference electrode having a reference potential with respect to the negative electrode includes measurement means for measuring a voltage V of the negative electrode with respect to the lithium reference electrode and a discharge capacity Q of the lithium secondary battery during discharge of the lithium secondary battery; generation means for generating a V-dQ/dV curve representing a relationship between dQ/dV, which is a proportion of an amount of change dQ in the discharge capacity Q to an amount of change dV in the voltage V, and the voltage V; calculation means for calculating an intensity ratio of two peaks appearing on the V-dQ/dV curve for two voltage values in the voltage V; and sensing means for sensing a state of the negative electrode utilizing the intensity ratio.
摘要:
There is provided a control system for a lithium secondary battery that can quantitatively sense a deterioration state inherent in a lithium secondary battery using silicon oxide as a negative electrode active material, that is, the nonuniform reaction state of a negative electrode. A control system for a lithium secondary battery including a positive electrode, a negative electrode using silicon oxide as a negative electrode active material, and a lithium reference electrode having a reference potential with respect to the negative electrode includes measurement means for measuring a voltage V of the negative electrode with respect to the lithium reference electrode and a discharge capacity Q of the lithium secondary battery during discharge of the lithium secondary battery; generation means for generating a V-dQ/dV curve representing a relationship between dQ/dV, which is a proportion of an amount of change dQ in the discharge capacity Q to an amount of change dV in the voltage V, and the voltage V; calculation means for calculating an intensity ratio of two peaks appearing on the V-dQ/dV curve for two voltage values in the voltage V; and sensing means for sensing a state of the negative electrode utilizing the intensity ratio.
摘要:
In a lithium ion secondary battery including a positive electrode, a separator, a negative electrode, and a package body, the negative electrode includes simple substance silicon as a negative electrode active material, and a negative electrode binder, and is doped with lithium, and the following formulas (1) and (2) are satisfied: 1.2≦Ma/Mc≦1.9 (1) 1.0
摘要翻译:在包含正极,隔膜,负极和封装体的锂离子二次电池中,负极包括作为负极活性物质的单质硅和负极粘合剂,并掺杂有锂,并且 满足以下公式(1)和(2):1.2≦̸ Ma / Mc≦̸ 1.9(1)1.0
摘要:
Provided are a negative electrode for a secondary battery realizing satisfactory cycle characteristics and a method for manufacturing the same, and a nonaqueous electrolyte secondary battery having satisfactory cycle characteristics. A negative electrode for a secondary battery formed by bonding a negative electrode active material to a negative electrode collector with a negative electrode binder, in which the negative electrode binder is a polyimide or a polyamide-imide, and the negative electrode collector is a Cu alloy containing at least one metal (a) selected from the group consisting of Sn, In, Mg and Ag and has a conductivity of 50 IACS % or more. The negative electrode for a secondary battery can be manufactured by a method including forming a negative electrode layer containing the negative electrode active material and the precursor of the negative electrode binder on the negative electrode collector; and bonding the negative electrode active material to the negative electrode collector with the negative electrode binder by curing the precursor of the negative electrode binder at 250 to 350° C.
摘要:
In a lithium ion secondary battery including a positive electrode, a separator, a negative electrode, and a package body, the negative electrode includes simple substance silicon as a negative electrode active material, and a negative electrode binder, and is doped with lithium, and the following formulas (1) and (2) are satisfied: 1.2≦Ma/Mc≦1.9 (1) 1.0
摘要翻译:在包含正极,隔膜,负极和封装体的锂离子二次电池中,负极包括作为负极活性物质的单质硅和负极粘合剂,并掺杂有锂,并且 满足以下公式(1)和(2):1.2 @ Ma / Mc @ 1.9(1)1.0
摘要:
A secondary battery according to the present exemplary embodiment is a secondary battery including a laminated electrode body provided with at least one pair of positive and negative electrodes and an outer enclosure that accommodates the laminated electrode body, wherein the outer enclosure includes one or more concave portions, inside a border corresponding to an outer edge of an electrode surface of an outermost layer of the laminated electrode body, on a surface facing the electrode surface, and wherein, when a band-shaped outer circumferential region having an area that is a half of an area inside the border is set inside the border, at least one of the concave portions is located inside the outer circumferential region.
摘要:
There is provided a negative electrode for a nonaqueous electrolyte secondary battery in which when a battery is formed, the energy density is high, and moreover, the decrease in charge and discharge capacity is small even if charge and discharge are repeated. By using silicon oxide particles having a particle diameter in a particular range as a starting raw material, and heating these particles in the range of 850° C. to 1050° C., Si microcrystals are deposited on the surfaces of the particles. Then, by performing doping of Li, a structure comprising a plurality of protrusions having height and cross-sectional area in a particular range is formed on the surfaces. The average value of the height of the above protrusions is 2% to 19% of the average particle diameter of the above lithium-containing silicon oxide particles. By using the lithium-containing silicon oxide particles obtained by the above means as a negative electrode active material, a negative electrode for a nonaqueous electrolyte secondary battery is fabricated.
摘要:
There is provided a negative electrode for a nonaqueous electrolyte secondary battery in which when a battery is formed, the energy density is high, and moreover, the decrease in charge and discharge capacity is small even if charge and discharge are repeated. By using silicon oxide particles having a particle diameter in a particular range as a starting raw material, and heating these particles in the range of 850° C. to 1050° C., Si microcrystals are deposited on the surfaces of the particles. Then, by performing doping of Li, a structure comprising a plurality of protrusions having height and cross-sectional area in a particular range is formed on the surfaces. The average value of the height of the above protrusions is 2% to 19% of the average particle diameter of the above lithium-containing silicon oxide particles. By using the lithium-containing silicon oxide particles obtained by the above means as a negative electrode active material, a negative electrode for a nonaqueous electrolyte secondary battery is fabricated.
摘要:
There is provided a polymer secondary battery using silicon and silicon oxide as a negative electrode active material that shows a high capacity retention rate also when a charge and discharge cycle is repeated. A polymer secondary battery including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a polymer-containing gel electrolyte, wherein the negative electrode includes silicon and silicon oxide as a negative electrode active material, and the polymer-containing gel electrolyte is present in voids formed by fine division of particles of the negative electrode active material.