摘要:
Disclosed are methods and compositions for cementing in a subterranean formation. A method comprises introducing a resin composition into a wellbore. The resin composition may comprise a resin, a napthol-based epoxy resin additive, and a hardening agent. The napthol-based epoxy resin additive may comprise two naphthalene functional groups and two epoxide functional groups.
摘要:
The present invention includes well treatment fluids and methods utilizing nano-particles. An embodiment of a method of the present invention may comprise introducing a treatment fluid comprising nano-clay into a subterranean formation. The treatment fluid may be selected from the group consisting of a cement composition, a drilling fluid, a spacer fluid, and a lost circulation control composition. Another embodiment of the present invention may comprise a method of cementing. The method of cementing may comprise introducing a cement composition comprising a hydraulic cement, nano-clay, and water into a subterranean formation. The method further may comprise allowing the cement composition to set in the subterranean formation. Yet another embodiment of the present invention may comprise a treatment fluid, the treatment fluid comprising nano-clay. The treatment fluid may be selected from the group consisting of a cement composition, a drilling fluid, a spacer fluid, and a lost circulation control composition.
摘要:
Methods and compositions that comprise sub-micron alumina for accelerating setting of a cement composition. An embodiment includes a method of cementing in a subterranean formation. The method may comprise introducing a cement composition into the subterranean formation, wherein the cement composition comprises hydraulic cement, sub-micron alumina, and water. The method further may comprise allowing the cement composition to set in the subterranean formation. Another embodiment includes a cement composition that may comprise hydraulic cement, sub-micron alumina, and water.
摘要:
The present invention includes well treatment fluids and methods utilizing nano-particles. An embodiment of a method of the present invention may comprise introducing a treatment fluid comprising nano-clay into a subterranean formation. The treatment fluid may be selected from the group consisting of a cement composition, a drilling fluid, a spacer fluid, and a lost circulation control composition. Another embodiment of the present invention may comprise a method of cementing. The method of cementing may comprise introducing a cement composition comprising a hydraulic cement, nano-clay, and water into a subterranean formation. The method further may comprise allowing the cement composition to set in the subterranean formation. Yet another embodiment of the present invention may comprise a treatment fluid, the treatment fluid comprising nano-clay. The treatment fluid may be selected from the group consisting of a cement composition, a drilling fluid, a spacer fluid, and a lost circulation control composition.
摘要:
Of the many compositions provided herein, an embodiment includes a foamed cement composition comprising a cementitious component, an oil-swellable particle comprising at least one swellable elastomer selected from the group consisting of acrylate butadiene rubber, polyacrylate rubber, isoprene rubber, choloroprene rubber, butyl rubber, brominated butyl rubber, chlorinated butyl rubber, chlorinated polyethylene, neoprene rubber, styrene butadiene block copolymer, sulphonated polyethylene, ethylene acrylate rubber, epichlorohydrin ethylene oxide copolymer, ethylene-propylene rubber, ethylene vinyl acetate copolymer, fluorosilicone rubber, silicone rubber, and combinations thereof, a foaming and stabilizing surfactant, gas, and water. Another embodiment includes a foamed cement composition comprising a cementitious component, an oil-swellable particle comprising a block copolymer of styrene butadiene rubber, a foaming and stabilizing surfactant, and gas.
摘要:
The present invention includes methods and compositions that include a latex, and at least one of a natural pozzolan or cement kiln dust. An embodiment includes a method comprising: placing a latex composition in a subterranean formation, wherein the latex composition comprises: latex, a component selected from the group consisting of a natural pozzolan, cement kiln dust, and a combination thereof, and water; and allowing the latex composition to set. Another embodiment of the present invention includes a latex composition comprising: latex, a component selected from the group consisting of a natural pozzolan, cement kiln dust, and a combination thereof.
摘要:
Methods and compositions are provided that may comprise cement, a nano-particle, latex, and water. An embodiment of the present invention includes a method of cementing in a subterranean formation. The method may include introducing a cement composition into the subterranean formation, wherein the cement composition comprises cement, a nano-particle, latex, and water. The method further may include allowing the cement composition to set in the subterranean formation. Another embodiment of the present invention include a cement composition. The cement composition may comprise cement, a nano-particle, latex, and water.
摘要:
A variety of methods and compositions are disclosed, including, in one embodiment, a method of cementing in a subterranean formation comprising introducing a cement composition into the subterranean formation, wherein the cement composition comprises cement; a strength-enhancing additive consisting essentially of aluminum chloride and a metal halide; and water; and allowing the cement composition to set. Another method of cementing in a subterranean formation comprises preparing a cement composition that comprises cement, a strength-enhancing additive consisting essentially of aluminum chloride and a metal halide, and water, wherein the aluminum chloride and the salt are not combined prior to preparing the cement composition; introducing the cement composition into the subterranean formation; and allowing the cement composition to set.
摘要:
A variety of methods and compositions are disclosed herein, including, in one embodiment, a method of cementing in a subterranean formation comprising: providing an extended cement composition comprising cement, water, an oil-swellable particle, and a set retarding additive, wherein the extended cement composition is capable of remaining in a pumpable fluid state for at least about 1 day; adding a cement set accelerator to the extended cement composition; introducing the extended cement composition into a well bore; and allowing the extended cement composition to set. Another embodiment comprises an extended cement composition comprising: cement; water; an oil-swellable particle; and a set retarding additive, wherein the extended cement composition is capable of remaining in a pumpable fluid state for at least about 1 day.
摘要:
A variety of methods and compositions are disclosed herein, including, in one embodiment, a method of cementing in a subterranean formation comprising: providing an extended cement composition comprising cement, water, an oil-swellable particle, and a set retarding additive, wherein the extended cement composition is capable of remaining in a pumpable fluid state for at least about 1 day; adding a cement set accelerator to the extended cement composition; introducing the extended cement composition into a well bore; and allowing the extended cement composition to set. Another embodiment comprises an extended cement composition comprising: cement; water; an oil-swellable particle; and a set retarding additive, wherein the extended cement composition is capable of remaining in a pumpable fluid state for at least about 1 day.