摘要:
According to the invention, the image contrast in electron optics can be improved without causing aberrations that are no longer tolerable by using, for production and correction of the at least one anamorphic image, quadrupole fields before and after this image whose extent in the direction of the optical axis is equal to at least twice their focal length, and wherein at least one of the axial rays, by an appropriate choice of the magnification M of the intermediate image, enters the quadrupole field before the at least one anamorphic image at a slope 1/M such that a length of the anamorphic image is achieved at which any aberrations caused are still within a tolerable range. The invention also relates to devices for implementing this method.
摘要:
In a high resolution imaging system for close inspection of sub-micrometer structures, a scanning electron microscope includes a detector objective essentially composed of an immersion lens and an annular detector which is arranged between a source side electrode lying at a positive potential and a middle electrode of the immersion lens which likewise lies at a variable positive potential and is arranged concentrically relative to a beam axis of a scanning microscope. The middle electrode and the source side electrode are preferrably formed as truncated cones. The two-stage deflection element for positioning the primary electron beam on the specimen is preferrably integrated into the source side electrode of the immersion lens, the source side electrode being composed of an annular diaphragm and a hollow cylinder.
摘要:
A corrector (1) for the axial and off-axial beam path of a particle-optical system, comprises a first (10) and a second (20) correction piece, which are disposed one behind the other in the beam path (2) on an optical axis (3). Each correction piece (10, 20) comprises four successive multipole elements (11, 12, 13, 14; 24, 23, 22, 21) disposed symmetrically with respect to a center plane (5) and with the following fields: wherein the first (11; 24) and the fourth (14; 21) multipole elements of the multipole elements (11, 12, 13, 14; 24, 23, 22, 21) are used to generate quadrupole fields (11′, 14′; 24′, 21′) and the second (12; 23) and third (13; 22) are used to generate octupole fields (12′″, 13′″; 23′″,22′″) and quadrupole fields (12′, 13′; 23′,22′), wherein the latter are superposed magnetic (12′, 13′; 23′, 22′) and electric fields (12″, 13″; 23″, 22″), wherein the quadrupole fields (11′, 12′, 13′, 14′; 24′, 23′, 22′, 21′) of all four multipole elements (11, 12, 13, 14; 24, 23, 22,21) are rotated from one to the next through 90°. An astigmatism of third order is corrected by a central multipole element disposed in the center plane and generating an octupole field.
摘要:
An electron beam apparatus has a primary beam directed onto a point of a specimen to generate emerging secondary electrons that proceed to a detector after traversing an electrical extraction field. The extraction field is provided between electrodes arranged in a plane perpendicular to the optical axis of the electron beam device and a magnetic field is provided perpendicular to the electrical extraction field to compensate for the forces of the extraction field exerted on the primary beam yet to promote extraction of the secondary electrons.
摘要:
In a corpuscular-optical beam path, the generation of short electron pulses with steep leading edges is to be effected without a probe movement in the probe plane taking place. For this purpose, the particle beam blanking system comprises at least two deflection systems and a knife edge arranged between two deflection systems in an intermediate image plane, the operating parameters of the deflection systems and the knife edge being matched to the energy distribution of the particles in such a fashion that shifting of the particle beam in the probe plane disappears.
摘要:
The invention relates to a method for producing image contrast by phase shifting in the electron optics, wherein, from an intermediate image (5), an anamorphic image (6, 6′) of the axial rays (xα, yβ) is produced by quadrupole fields (Q1′, Q2′, Q3′; Q11′, Q12′, Q13′) with simultaneous passage through zero of the field rays (xγ, yδ) in at least one diffraction intermediate image plane (8, 8′), where a relative phase shift between a region (14) around the electron beam of zeroth order of diffraction (13) and the electron beams of higher orders of diffraction (15) is caused by a magnetic or electric field (9, 9′), and thereafter the at least one anamorphosis of the beam path produced is corrected again by further quadrupole fields (Q4′, Q5′; Q13′, Q14′, Q15′). According to the invention, the image contrast can be further improved without causing aberrations that are no longer tolerable by using, for production and correction of the at least one anamorphic image (6, 6′), quadrupole fields (Q2′, Q4′; Q12′, Q14′) before and after this image (6, 6′) whose extent in the direction of the optical axis (10) is equal to at least twice their focal length, and wherein at least one of the axial rays (xα, yβ), by an appropriate choice of the magnification M of the intermediate image (5), enters the quadrupole field (Q2′, Q12′) before the at least one anamorphic image (6, 6′) at a slope 1/M such that a length (7) of the anamorphic image (6, 6′) is achieved at which any aberrations caused are still within a tolerable range. The invention also relates to devices for implementing this method.
摘要:
A corrector (1) for the axial and off-axial beam path of a particle-optical system, comprises a first (10) and a second (20) correction piece, which are disposed one behind the other in the beam path (2) on an optical axis (3). Each correction piece (10, 20) comprises four successive multipole elements (11, 12, 13, 14; 24, 23, 22, 21) disposed symmetrically with respect to a center plane (5) and with the following fields: wherein the first (11; 24) and the fourth (14; 21) multipole elements of the multipole elements (11, 12, 13, 14; 24, 23, 22, 21) are used to generate quadrupole fields (11′, 14′; 24′, 21′) and the second (12; 23) and third (13; 22) are used to generate octupole fields (12′″, 13′″;23′″,22′″) and quadrupole fields (12′, 13′; 23′,22′), wherein the latter are superposed magnetic (12′, 13′; 23′, 22′) and electric fields (12″, 13″; 23″, 22″), wherein the quadrupole fields (11′, 12′, 13′, 14′; 24′, 23′, 22′, 21′) of all four multipole elements (11, 12, 13, 14; 24, 23, 22,21) are rotated from one to the next through 90°. An astigmatism of third order is corrected by a central multipole element disposed in the center plane and generating an octupole field.
摘要:
Multipole coils (1, 2, 3, 4, 5, 6) for influencing particle beams have at least two coils (1, 2) which concentrically enclose an imaginary axis (10), wherein a winding (7) made from a flexible circuit board (8) is formed by means of conducting paths (9) disposed thereon for each coil (1, 2, 3, 4, 5, 6) and the circuit boards (8) are rolled into at least one circuit board layer (11, 12, 13, 14). Multipole coils of this kind (1, 2, 3, 4, 5, 6) are utilized for aberration correction in particle optics, wherein the windings (7) of the multipole coils (1, 2, 3, 4, 5, 6) form windows (16) whose width in the peripheral direction is chosen in such a fashion that no secondary interfering fields occur and whose length in the axial direction corresponds at least to its width.
摘要:
The invention concerns a corrector (10) for chromatic and aperture aberration correction in a scanning electron microscope or a scanning transmission electron microscope, comprising four multipole elements (1, 2, 3, 4) which are consecutively disposed in the optical path (9), the first (1) and fourth (4) of which are used to generate quadrupole fields (5, 6) and the second (2) and third (3) of which are used to generate octupole fields (11, 12) and quadrupole fields (7, 7′, 8, 8′), wherein the latter are superposed magnetic (7, 8) and electric (7′, 8′) fields, and wherein the quadrupole fields (5, 6, 7, 8) of all four multipole elements (1, 2, 3, 4) are successively rotated with respect to one another through 90°. Elimination of errors up to fifth order can be realized with a corrector (10) of this type in that the second (2) and the third (3) multipole elements are designed as twelve-pole elements, and an additional twelve-pole element (13) is inserted between the second (2) and the third (3) multipole element, and is loaded with current and/or voltage, such that an octupole field (14) is generated that is superposed by a twelve-pole field (15).
摘要:
The invention relates to a method for determining geometrical-optical aberrations up to and including 3rd order in particle-optical, probe-forming systems, in particular scanning electron microscopes, comprising an essentially punctiform source, lenses, an object, and a detector, the image being recorded, the process being repeated with an overfocussed and an underfocussed beam, the images being transformed in Fourier space, the transformation of the overfocussed image, and the underfocussed image is divided by the transformed focussed image. The results are reverse transformed, and the brightness profiles of the probes, the images of the source, are determined in overfocus and underfocus. The asymmetry, the width and/or the curvature of the profile being determined in the center, and the image aberration being determined from the differences.