摘要:
A decision feedback equalizer (DFE) and method include summer circuits configured to add a dynamic feedback tap to a received input to provide a sum and to add a speculative static tap to the sum. Sense amplifiers are configured to receive outputs of the summer circuits and evaluate the outputs of the summer circuits in accordance with a clock signal. A passgate multiplexer is configured to receive outputs from sense amplifiers wherein the multiplexers is clock-gated for isolation of subsequent ciruitry from the outputs of the sense amplifiers during a precharged period. A gating circuit is configured to perform gating of a selected signal output from a second circuit portion with a clock signal and to enable the isolation of the subsequent circuitry by the multiplexer during the precharge period. A regenerative buffer is coupled to the multiplexer to maintain an output of the multiplexer during the precharge period, to provide the select signal for a passgate multiplexer in the second circuit portion of the DFE and to drive the dynamic feedback tap on the first circuit portion of the DFE.
摘要:
A decision feedback equalizer (DFE) and method include summer circuits configured to add a dynamic feedback tap to a received input to provide a sum and to add a speculative static tap to the sum. Sense amplifiers are configured to receive outputs of the summer circuits and evaluate the outputs of the summer circuits in accordance with a clock signal. A passgate multiplexer is configured to receive outputs from sense amplifiers wherein the multiplexer is clock-gated for isolation of subsequent circuitry from the outputs of the sense amplifiers during a precharge period. A gating circuit is configured to perform gating of a select signal output from a second circuit portion with a clock signal and to enable the isolation of the subsequent circuitry by the multiplexer during the precharge period. A regenerative buffer is coupled to the multiplexer to maintain an output of the multiplexer during the precharge period, to provide the select signal for a passgate multiplexer in the second circuit portion of the DFE and to drive the dynamic feedback tap on the first circuit portion of the DFE.
摘要:
Clock synchronization and data recovery techniques are disclosed. For example, a technique for synchronizing a clock for use in recovering received data comprises the following steps/operations. A first clock (e.g., a data clock) is set for a first sampling cycle to a first phase position within a given unit interval in the received data. A second clock (e.g., a sweep clock) is swept through other phase positions with respect to the first phase position such that a transition from the given unit interval to another unit interval in the received data is determined. A sampling point is determined based on measurements at the phase positions associated with the second clock. The second clock is set to the phase position corresponding to the sampling point such that data may be recovered at that sampling point. Further, for a next sampling cycle, the first clock may be used to sweep through phase positions with respect to the set phase position of the second clock corresponding to the sampling point in the first sampling cycle such that a next sampling point may be determined.
摘要:
In the context of high-speed serial links, data-dependent jitter compensation techniques performed using phase pre-distortion. Broadly contemplated is an expansion of the notion of pre-emphasis beyond conventional amplitude compensation of ISI, whereby phase pre-emphasis for compensating data-dependent jitter (DDJ) is introduced. DDJ can be addressed by exploiting the relationship between the data sequence and the timing deviation. Phase pre-emphasis improves the signal integrity with little additional power consumption in the transmitter and with no cross-talk penalty.
摘要:
A dual mode clock and data recovery (CDR) system is disclosed. A fast locking, oversampling CDR acquisition module can begin the process to quickly create a data acquisition clock signal in start up data acquisition conditions. When at least some data can be extracted from the incoming data stream, the DRR system can indicate such stability and switch to accept control from a low power CDR maintenance module. The low power CDR maintenance module can then fine tune and maintain the timing of the data acquisition signal. If the quality of the data lock under CDR maintenance module control degrades to a sufficient degree, the high power CDR acquisition module can be re-enables and re-assert control from the low power module until such time as the lock quality is again sufficient for the low power module to be used.
摘要:
A method and system for determining the eye pattern margin parameters of a receiver system during diagnostic testing is presented. The circuitry in the receiver's front end comprises a series of latches, XOR gates and OR gates which first provide the data samples and edge samples, i.e., data sampled at the rising or falling edge of an (edge) clock characterized by a phase delay relative to the data sampling clock. The receiver also comprises optimization circuitry for the ideal alignment of the edge clock (edges) with the data edges. The method further provides for a phase shifting of the edge clock to the left and right from the ideal/locked position to screen the data eye pattern in order to compute the Bit Error Rate (BER) value. The position of the edge clock relative to the data sampling clock determines the horizontal eye opening for the computed BER.
摘要:
Clock synchronization and data recovery techniques are disclosed. For example, a technique for synchronizing a clock for use in recovering received data comprises the following steps/operations. A first clock (e.g., a data clock) is set for a first sampling cycle to a first phase position within a given unit interval in the received data. A second clock (e.g., a sweep clock) is swept through other phase positions with respect to the first phase position such that a transition from the given unit interval to another unit interval in the received data is determined. A sampling point is determined based on measurements at the phase positions associated with the second clock. The second clock is set to the phase position corresponding to the sampling point such that data may be recovered at that sampling point. Further, for a next sampling cycle, the first clock may be used to sweep through phase positions with respect to the set phase position of the second clock corresponding to the sampling point in the first sampling cycle such that a next sampling point may be determined.
摘要:
A dual mode clock and data recovery (CDR) system is disclosed. A fast locking, oversampling CDR acquisition module can begin the process to quickly create a data acquisition clock signal in start up data acquisition conditions. When at least some data can be extracted from the incoming data stream, the CDR system can indicate such stability and switch to accept control from a low power CDR maintenance module. The low power CDR maintenance module can then fine tune and maintain the timing of the data acquisition signal. If the quality of the data lock under CDR maintenance module control degrades to a sufficient degree, the high power CDR acquisition module can be re-enables and re-assert control from the low power module until such time as the lock quality is again sufficient for the low power module to be used.
摘要:
A design structure for a high speed computer processor system includes a high speed interface for a graphics processor. In a preferred embodiment, the high speed interface includes a front side bus (FSB) that interfaces to a similar high speed interface on the graphics processor.
摘要:
Techniques are disclosed for fabricating tunable electrical components in integrated circuits. For example, a method of tuning a value of an electrical component, such as a planar inductor, includes the steps of placing a conductive layer in proximity of the electrical component, and adjusting an amount of material that constitutes the conductive layer such that the value of the electrical component is tuned to a particular value. The adjustment step may be performed so as to select a frequency band with which the inductor is associated or to correct a manufacturing deviation in a frequency with which the inductor is associated.