摘要:
A decision feedback equalizer (DFE) and method include summer circuits configured to add a dynamic feedback tap to a received input to provide a sum and to add a speculative static tap to the sum. Sense amplifiers are configured to receive outputs of the summer circuits and evaluate the outputs of the summer circuits in accordance with a clock signal. A passgate multiplexer is configured to receive outputs from sense amplifiers wherein the multiplexers is clock-gated for isolation of subsequent ciruitry from the outputs of the sense amplifiers during a precharged period. A gating circuit is configured to perform gating of a selected signal output from a second circuit portion with a clock signal and to enable the isolation of the subsequent circuitry by the multiplexer during the precharge period. A regenerative buffer is coupled to the multiplexer to maintain an output of the multiplexer during the precharge period, to provide the select signal for a passgate multiplexer in the second circuit portion of the DFE and to drive the dynamic feedback tap on the first circuit portion of the DFE.
摘要:
A decision feedback equalizer (DFE) and method include summer circuits configured to add a dynamic feedback tap to a received input to provide a sum and to add a speculative static tap to the sum. Sense amplifiers are configured to receive outputs of the summer circuits and evaluate the outputs of the summer circuits in accordance with a clock signal. A passgate multiplexer is configured to receive outputs from sense amplifiers wherein the multiplexer is clock-gated for isolation of subsequent circuitry from the outputs of the sense amplifiers during a precharge period. A gating circuit is configured to perform gating of a select signal output from a second circuit portion with a clock signal and to enable the isolation of the subsequent circuitry by the multiplexer during the precharge period. A regenerative buffer is coupled to the multiplexer to maintain an output of the multiplexer during the precharge period, to provide the select signal for a passgate multiplexer in the second circuit portion of the DFE and to drive the dynamic feedback tap on the first circuit portion of the DFE.
摘要:
Clock synchronization and data recovery techniques are disclosed. For example, a technique for synchronizing a clock for use in recovering received data comprises the following steps/operations. A first clock (e.g., a data clock) is set for a first sampling cycle to a first phase position within a given unit interval in the received data. A second clock (e.g., a sweep clock) is swept through other phase positions with respect to the first phase position such that a transition from the given unit interval to another unit interval in the received data is determined. A sampling point is determined based on measurements at the phase positions associated with the second clock. The second clock is set to the phase position corresponding to the sampling point such that data may be recovered at that sampling point. Further, for a next sampling cycle, the first clock may be used to sweep through phase positions with respect to the set phase position of the second clock corresponding to the sampling point in the first sampling cycle such that a next sampling point may be determined.
摘要:
A programmable delay generator and a cascaded interpolator are provided. The programmable delay generator includes a first delay line and a second delay line, each having a respective plurality of stages of the same number. Each stage of the first line includes a respective delay buffer and has one signal input and one signal output. Each stage of the second line includes a respective selecting element and has two signal inputs, one select input for selecting one of the two signal inputs, and one signal output. The first line and the second line are configured in parallel, are interconnected, and have a same signal propagation direction. Each delay step provided by each stage of the second line is equal to a difference between a delay through one stage of the first line and a delay through one stage of the second line.
摘要:
A conditioning buffer is provided for a clock interpolator that controls the duration of the clock edges to achieve high-linearity interpolation. The conditioning buffer includes a first buffer and a second buffer, with a fixed or variable strength, that receive their respective inputs from a set of mutually delayed clock signals, such as a set of N equidistant clock phases with mutual delay of 360/N degrees, to form a two-tap transversal filter that is insensitive to changes in Process, Temperature, and Voltage (PVT). Use of an equidistant set of clock phases makes the time constant of such transversal filter proportional to the clock period thus making it insensitive to changes in clock frequency as well. Such transversal filtering action operated in conjunction with natural bandwidth limitations of the buffers yields an efficient clock conditioning circuit that is highly insensitive to PVT and clock frequency variations.
摘要:
A digital signal processing device for processing an input signal includes delay generation circuitry and processing circuitry. The delay generation circuitry receives the input signal and includes a plurality of delay stages operatively coupled together, each of the delay stages having a predetermined time delay associated therewith. The delay generation circuitry includes a zero delay signal path and at least one nonzero delay signal path associated therewith. The processing circuitry is operatively configured to: (i) define a first subset of signal paths through the delay generation circuitry, the first subset including the zero delay signal path, and at least a second subset of signal paths through the delay generation circuitry, the second subset including one or more nonzero delay signal paths; (ii) remove an idle delay from all signal paths in the second subset, such that a shortest nonzero delay signal path in the second subset becomes a zero delay signal path; and (iii) incorporate the idle delay with the processing circuitry.
摘要:
Josephson transmission structures (JTSs) which include Josephson transmission lines (JTLs) with filter circuitry and flux release circuitry. Two or more of these JTSs may be interconnected to form a superconducting high-gain operational amplifier intended for general-purpose analog signal processing is disclosed. The active elements of the amplifier are non-hysteretic Josephson junctions configured as dc SQUIDs (used as flux-to voltage transducers and impedance transformers) and Josephson transmission lines (used as the main source of power gain). The amplifier has inverting and non-inverting voltage inputs, which can be fed from any low-resistance low-voltage sources, including dc SQUIDs. The output of the amplifier is in the form of a voltage which can drive typical transmission line impedances (e.g., 10-100 ohms). The variety of possible sources of input signals and the high gain of the amplifier enables wide range of applications including linear signal amplifiers, integrators, active filters and phase-locked oscillators.
摘要:
A conditioning buffer is provided for a clock interpolator that controls the duration of the clock edges to achieve high-linearity interpolation. The conditioning buffer includes a first buffer and a second buffer, with a fixed or variable strength, that receive their respective inputs from a set of mutually delayed clock signals, such as a set of N equidistant clock phases with mutual delay of 360/N degrees, to form a two-tap transversal filter that is insensitive to changes in Process, Temperature, and Voltage (PVT). Use of an equidistant set of clock phases makes the time constant of such transversal filter proportional to the clock period thus making it insensitive to changes in clock frequency as well. Such transversal filtering action operated in conjunction with natural bandwidth limitations of the buffers yields an efficient clock conditioning circuit that is highly insensitive to PVT and clock frequency variations.
摘要:
An apparatus and method to control signal phase in a radio device includes a phase rotator configured to control a phase of a local oscillator. A phase error determination module is configured to determine phase error information based on received in-phase (I) and quadrature (Q) (IQ) signal values. A phase correction module is configured to derive from the received IQ signal values a correction signal and apply the correction signal to the phase rotator in a path of the local oscillator.
摘要:
Multiple-input CML gates with a stack height of one are provided by using a composite device wherein input signals are propagated to the output through two or more stages of CML-like primitives connected in succession. A universal three-input CML gate (a 2:1 multiplexor) is provided by using a two-stage pipeline, and can be used to build other logic devices, such as AND, OR, and XOR functions, or a latch. The pipelined CML gates with a stack height of one provide a substantially improved voltage-speed trade-off under low-voltage conditions.