摘要:
Generally, and in one form, the present invention is a composition of light-emitting block copolymer. In another form, the present invention is a process producing a light-emitting block copolymers that intends polymerizing a first di(halo-methyl) aromatic monomer compound in the presence of an anionic initiator and a base to form a polymer and contacting a second di(halo-methyl) aromatic monomer compound with the polymer to form a homopolymer or block copolymer wherein the block copolymer is a diblock, triblock, or star polymer. In yet another form, the present invention is an electroluminescent device comprising a light-emitting block copolymer, wherein the electroluminescent device is to be used in the manufacturing of optical and electrical devices.
摘要:
A new class of electrochemical capacitors provides in its charged state a positive electrode including an active material of a p-doped material and a negative electrode including an active material of an n-doped conducting polymer, where the p-doped and n-doped materials are separated by an electrolyte. In a preferred embodiment, the positive and negative electrode active materials are selected from conducting polymers consisting of polythiophene, polymers having an aryl group attached in the 3-position, polymers having aryl and alkyl groups independently attached in the 3- and 4-positions, and polymers synthesized from bridged dimers having polythiophene as the backbone. A preferred electrolyte is a tetraalykyl ammonium salt, such as tetramethylammonium trifluoromethane sulphonate (TMATFMS), that provides small ions that are mobile through the active material, is soluble in acetonitrile, and can be used in a variety of capacitor configurations.
摘要:
The present invention involves monomeric compounds having the structure: ##STR1## Substituents W and Z are independently --CN, --NO.sub.2, -aryl, -aryl-V, --COX, SO.sub.2 R, --H, or -alkyl. Substituent X is --OR, or --NR,R where R and R.sup.1 are independently -alkyl or --H. Substituent V is -halide, --NO.sub.2, --CN, --SO.sub.2 R, or --COX. At least one of W and Z is --NO.sub.2, --SO.sub.2 R, --CN, --COX or -aryl-V. In one preferred embodiment substituents W and Z are both --CN. In another preferred embodiment, substituent X is --NO.sub.2 or --CN and substituent Z is --C.sub.6 H.sub.4 NO.sub.2. These monomers are polymerized to form low bandgap polymers.
摘要:
Electrospun fibers comprising mesoporous molecular sieve materials are described. In an aspect of the invention, fibers are electrospun from a conducting solution to which a high voltage electric current is applied. The apparatus includes in one aspect one or more conducting solution introduction devices for providing a quantity of conducting solution, said conducting solution introduction devices being electrically charged thereby establishing an electric field between said conducting solution introduction devices and a target, and means for controlling the flow characteristics of conducting solution from said one or more conducting solution introduction devices.
摘要:
The present invention comprises an apparatus for and method of creating electrically modifiable images using a computer printer. In one embodiment, one or more ink reservoirs of a printer cartridge are filled with an electrochromic ink. The printer thus prepared can be used to print electrochromic patterns on a surface using standard ink application methods. In certain embodiments, more than one ink reservoir is filled with electrochromic ink. In these embodiments, separate reservoirs are filled with separate ink formulations so that the characteristics of the electrochromic pattern can be varied.
摘要:
The present invention describes an improved method for the polymerization of &agr;,&agr;-dihalo-p-xylene's such as the &agr;,&agr;′-dihalo-2-methoxy-5-(2-ethylhexyloxy)-xylene's. The procedure for synthesis is based on the specific order of addition of reagents and the use of an anionic initiator that allows control of the molecular weight of the polymer. The molecular weight control allows processability of the polymer which is important for its utility in applications including in light-emitting-diodes, field effect transistors and photovoltaic devices.
摘要:
Process, apparatus, compositions and application modes are provided that relate to nanofiber spinning without the use of superacids in the spinning solution. The methods employ either acids or bases for a flocculation solution. The advances disclosed therein enable the use of nanofibers, including carbon nanotubes, for a variety of applications including, but not limited to, electromechanical actuators, supercapacitors, electronic textiles, and in devices for electrical energy harvesting.
摘要:
This invention relates to carbon nanofiber having a skin-core structure containing pitch and polyacrylonitrile, to a method of producing the carbon nanofiber, and to a product including the carbon nanofiber. The carbon nanofiber includes polyacrylonitrile and pitch having different properties respectively constituting a skin layer and/or a core layer, with a diameter of 1 μm or less, and thus functions of the carbon nanofiber vary depending on change in composition thereof.
摘要:
The present invention includes an apparatus for and method of creating electrically modifiable images using a computer printer. In one embodiment, one or more ink reservoirs of a printer cartridge are filled with an electrochromic ink. The printer thus prepared can be used to print electrochromic patterns on a surface using standard ink application methods. In certain embodiments, more than one ink reservoir is filled with electrochromic ink. In these embodiments, separate reservoirs are filled with separate ink formulations so that the characteristics of the electrochromic pattern can be varied.
摘要:
The claimed invention uses activated carbon fibers that incorporate porous carbon with a suitable pore size to maximize capacitance. The porous carbon material is prepared using a template, followed by incorporation into a matrix polymer and electrospinning of the mixture. Subsequent thermal treatments retain the fiber form, and a composite carbon fiber incorporating templated porous carbon is attained. The resulting electrode is binder free and 100% electrochemically active. Energy densities up to 41 Wh/kg in energy density 1.5 kW/kg in power density (electrode weight only) have been achieved.