摘要:
A catalyst system for the conversion of synthesis gas in a single stage to liquid hydrocarbons comprises(a) a copper-containing alcohol synthesis catalyst,(b) an iron-containing modifier for the alcohol synthesis catalyst to promote the formation of hydrocarbons, and(c) a metallosilicate wax cracking catalyst.The alcohol synthesis catalyst (a) can contain thorium, zinc, uranium or zirconium in addition to the copper.The iron-containing modifier (b) can contain an iron-containing zeolite such as ferrierite or an inorganic support containing ferrous or ferric ions. The metallosilicate can be a zeolite or gallosilicate. The zeolite can have a pore diameter of at least 5 Angstroms and can have the faujasite structure. A Group VIIIA metal e.g., Pd may be incorporated on the zeolite to suppress coke formation.A hydrocarbon product from the conversion can be obtained containing at least 70 percent by weight of hydrocarbons in the range C.sub.3 to a boiling point of 340.degree. C., and less than 10 percent by weight of methane.
摘要:
The process for the production of high molecular weight oxygenates by condensing low molecular weight oxygenates in the presence of CO and a catalyst having the general formula A.sub.a CuM.sub.c X.sub.d O.sub.x. In addition, a novel condensation catalyst comprising A.sub.a CuM.sub.c Bi.sub.d O.sub.x is disclosed for use in this process.
摘要:
The process for the production of high molecular weight oxygenates by condensing low molecular weight oxygenates in the presence of CO and a catalyst having the general formula A.sub.a CuM.sub.c X.sub.d O.sub.x. In addition, a novel condensation catalyst comprising A.sub.a CuM.sub.c Bi.sub.d O.sub.x is disclosed for use in this process.
摘要:
Maleic anhydride is hydrogenated to produce 1,4-butanediol in a two-stage process. In the first stage maleic anhydride and/or maleic acid contacted with hydrogen at a temperature of about 100.degree. C. to about 350.degree. C. in the presence of a suitable hydrogenation catalyst to produce succinic anhydride and/or gamma-butyrolactone. In the second stage, the succinic anhydride and/or gamma-butyrolactone and hydrogen are contacted at a temperature of about 180.degree. C. to about 350.degree. C. in the presence of a ruthenium-containing hydrogenation catalyst to produce 1,4-butanediol.
摘要:
In the process for the conversion of maleic acid to gamma-butyrolactone, 1.4-butanediol and/or tetrahydrofuran, a feedstream comprising maleic acid is hydrogenated in a first hydrogenation zone to produce a reaction product comprising succinic acid and unreacted hydrogen which is then supplied to a second hydrogenation zone, where succinic acid is converted to 1,4-butanediol, the temperatures of the feedstream comprising maleic acid and the first hydrogenation zone are controlled such that the temperature of maleic acid in the feedstream and the first hydrogenation zone does not exceed about 130° C., thereby minimizing the corrosive effects of the maleic acid and prolonging reactor life and improving overall process economics.
摘要:
Maleic acid, maleic anhydride or other hydrogenatable precursor are catalytically hydrogenated to 1,4-butanediol and tetrahydrofuran. It has been discovered that high yields of 1,4-butanediol are achieved when the hydrogenation catalyst comprises palladium, silver and rhenium on a carbon support and is prepared by the steps of(i) impregnating a carbon support with a source of palladium, silver and rhenium, wherein the source of palladium, silver and rhenium is at least one solution,(ii) after each impregnation step, drying the impregnated carbon support to remove solvent,(iii) heating the impregnated carbon support at a temperature of about 120.degree. C. to about 350.degree. C. under reducing conditions.The palladium in the catalyst is present in the form of crystallites having a particle size of less than 10 nm.
摘要:
Tetrahydrofuran and gamma-butyrolactone are prepared from at least one of maleic anhydride or succinic anhydride by catalytically hydrogenating vaporous maleic anhydride or vaporous succinic anhydride in the presence of hydrogen in contact with a catalyst comprising an essentially inert, at least partially porous support having an outer surface, and a catalytically active oxide material coating onto the outer surface of the support which strongly adheres to the support, wherein the catalytically active oxide material comprises the mixed oxides of copper, zinc and aluminum.
摘要:
Tetrahydrofuran and optionally gamma-butyrolactone are prepared from at least one of maleic anhydride or succinic anhydride by catalytically hydrogenating vaporous maleic anhydride or vaporous succinic anhydride in the presence of hydrogen and a catalyst comprising the mixed oxides of copper, zinc and aluminum.
摘要:
One embodiment of the present invention is a unique fuel cell system. Another embodiment is a unique desulfurization system. Yet another embodiment is a method of operating a fuel cell system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for fuel cell systems and desulfurization systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
摘要:
One embodiment of the present invention is a unique method for operating a fuel cell system. Another embodiment is a unique system for reforming a hydrocarbon fuel. Another embodiment is a unique fuel cell system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for fuel cell systems and steam reforming systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.