摘要:
A process for etching semiconductor substrates using a deep reactive ion etching process to produce through holes or slots (hereinafter “slots”) in the substrates. The process includes applying a first layer to a back side of a substrate as a first etch stop material. The first layer is a relatively soft etch stop material. A second layer is applied to the first layer on the back side of the substrate to provide a composite etch stop layer. The second layer is a relatively hard etch stop material. The substrate is etched from a side opposite the back side of the substrate to provide a slot in the substrate.
摘要:
A method of preparing a substrate such as a semiconductor chip or ceramic thin film having vias for soldering to a substrate requires that a first metal that is resistive to solder bonding be deposited on the backside of the semiconductor device. The deposited metal is removed from the surface of the semiconductor device, leaving the vias of the semiconductor device having the first metal deposited through them. This technique is useful in any requirement requiring a solder or brazing barrier. That is a photolithographic process in conjunction with a refractory or nonsolderable metal deposit is used to achieve an alloy or solder barrier.
摘要:
A method of preparing a substrate such as a semiconductor chip or ceramic thin film having vias for soldering to a substrate requires that a first metal that is resistive to solder bonding be deposited on the backside of the semiconductor device. The deposited metal is removed from the surface of the semiconductor device, leaving the vias of the semiconductor device having the first metal deposited through them. This technique is useful in any requirement requiring a solder or brazing barrier. This is, a photolithographic process in conjunction with a refractory or nonsolderable metal deposit is used to achieve an alloy or solder barrier.
摘要:
A fluidic pump (108) comprises an electrolyte cavity (110) and a pump outlet (115) fluidically coupled to the electrolyte cavity that are within at least a portion of a fluid guiding structure (105), two electrodes (112, 113) extending from the fluid guiding structure into the electrolyte cavity; and a vapor permeable membrane (120) that prevents an electrolyte (125) in the electrolyte cavity from passing through the pump outlet while allowing gas to flow through the pump outlet.
摘要:
The present invention provides low cost microfluidic devices having embedded metal conductors. The devices of the invention comprise a electronic component comprising a substrate having a first surface, a layer of electrically-conductive material deposited on a portion of the first substrate surface, a first sublayer of electrically-insulating material deposited on the first substrate surface and on the layer of electrically-conductive material, a second sublayer of electrically-insulating material deposited on the first sublayer of insulating material, and a third sublayer of electrically-insulating material deposited on the layer of dielectric material, and a fluid-handling component having a contoured surface affixed to the electronic component. The devices of the invention are advantageously used for performing electric field lysis and the polymerase chain reaction. The invention further advantageously provides simple, low cost methods for fabricating such microfluidic devices.