摘要:
A memory device cooperating with a memory controller scrambles each unit of data using a selected scrambling key before storing it in an array of nonvolatile memory cells. This helps to reduce program disturbs, user read disturbs, and floating gate to floating gate coupling that result from repeated and long term storage of specific data patterns. For a given page of data having a logical address and for storing at a physical address, the key is selected from a finite sequence thereof as a function of both the logical address and the physical address. In a block management scheme the memory array is organized into erase blocks, the physical address is the relative page number in each block. When logical address are grouped into logical groups and manipulated as a group and each group is storable into a sub-block, the physical address is the relative page number in the sub-block.
摘要:
A memory device cooperating with a memory controller scrambles each unit of data using a selected scrambling key before storing it in an array of nonvolatile memory cells. This helps to reduce program disturbs, user read disturbs, and floating gate to floating gate coupling that result from repeated and long term storage of specific data patterns. For a given page of data having a logical address and for storing at a physical address, the key is selected from a finite sequence thereof as a function of both the logical address and the physical address. In a block management scheme the memory array is organized into erase blocks, the physical address is the relative page number in each block. When logical address are grouped into logical groups and manipulated as a group and each group is storable into a sub-block, the physical address is the relative page number in the sub-block.
摘要:
In a nonvolatile memory array, data is stored in multi-level cells (MLC) as upper-page data and lower-page data. Safe copies of both upper-page and lower-page data are stored in on-chip cache during programming. If a write fail occurs, data is recovered from on-chip cache. The controller does not have to maintain safe copies of data.
摘要:
In a nonvolatile memory system, data received from a host by a memory controller is transferred to an on-chip cache, and new data from the host displaces the previous data before it is written to the nonvolatile memory array. A safe copy is maintained in on-chip cache so that if a program failure occurs, the data can be recovered and written to an alternative location in the nonvolatile memory array.
摘要:
In a nonvolatile memory system, data received from a host by a memory controller is transferred to an on-chip cache, and new data from the host displaces the previous data before it is written to the nonvolatile memory array. A safe copy is maintained in on-chip cache so that if a program failure occurs, the data can be recovered and written to an alternative location in the nonvolatile memory array.
摘要:
In a nonvolatile memory array, data is stored in multi-level cells (MLC) as upper-page data and lower-page data. Safe copies of both upper-page and lower-page data are stored in on-chip cache during programming. If a write fail occurs, data is recovered from on-chip cache. The controller does not have to maintain safe copies of data.
摘要:
Techniques for the reading and writing of data in multi-state non-volatile memories are described. Data is written into the memory in a binary format, read into the data registers on the memory, and “folded” within the registers, and then written back into the memory in a multi-state format. In the folding operation, binary data from a single word line is folded into a multi-state format and, when rewritten in multi-state form, is written into a only a portion of another word line. A corresponding reading technique, where the data is “unfolded” is also described. The techniques further allow for the data to be encoded with an error correction code (ECC) on the controller that takes into account its eventual multi-state storage prior to transferring the data to the memory to be written in binary form. A register structure allowing such a “folding” operation is also presented. One set of embodiments include a local internal data bus that allows data to between the registers of different read/write stacks, where the internal bus can used in the internal data folding process.
摘要:
Techniques for the reading and writing of data in multi-state non-volatile memories are described. Data is written into the memory in a binary format, read into the data registers on the memory, and “folded” within the registers, and then written back into the memory in a multi-state format. In the folding operation, binary data from a single word line is folded into a multi-state format and, when rewritten in multi-state form, is written into a only a portion of another word line. A corresponding reading technique, where the data is “unfolded” is also described. The techniques further allow for the data to be encoded with an error correction code (ECC) on the controller that takes into account its eventual multi-state storage prior to transferring the data to the memory to be written in binary form. A register structure allowing such a “folding” operation is also presented. One set of embodiments include a local internal data bus that allows data to between the registers of different read/write stacks, where the internal bus can used in the internal data folding process.
摘要:
A method and system for phasing power-intensive operations is disclosed. A non-volatile storage device controller detects a power reset. The controller is in communication with non-volatile memories in the non-volatile storage device. In response to detecting a power reset, the controller determines a current consumption necessary to reset the non-volatile memories in the non-volatile storage device. The controller simultaneously resets all of the non-volatile memories when the determined current consumption is less than a current consumption threshold. If the determined current consumption is greater than the current consumption threshold, the controller resets a first subset of the plurality of non-volatile memories, and after a predetermined delay, resets a second subset of the non-volatile memories. Therefore, a power-intensive operation may be performed without exceeding a current consumption threshold by dividing the operation into a sequence of steps that do not exceed the threshold.
摘要:
A method and system for phasing power-intensive operations is disclosed. A non-volatile storage device controller detects a power reset. The controller is in communication with non-volatile memories in the non-volatile storage device. In response to detecting a power reset, the controller determines a current consumption necessary to reset the non-volatile memories in the non-volatile storage device. The controller simultaneously resets all of the non-volatile memories when the determined current consumption is less than a current consumption threshold. If the determined current consumption is greater than the current consumption threshold, the controller resets a first subset of the plurality of non-volatile memories, and after a predetermined delay, resets a second subset of the non-volatile memories. Therefore, a power-intensive operation may be performed without exceeding a current consumption threshold by dividing the operation into a sequence of steps that do not exceed the threshold.