Abstract:
A semiconductor device comprises a silicate interface layer and a high-k dielectric layer overlying the silicate interface layer. The high-k dielectric layer comprises metal alloy oxides.
Abstract:
A semiconductor device comprises a silicate interface layer and a high-k dielectric layer overlying the silicate interface layer. The high-k dielectric layer comprises metal alloy oxides.
Abstract:
A semiconductor device includes a first conductive pattern on a substrate, an insulating diffusion barrier layer conformally covering a surface of the first conductive pattern, the insulation diffusion barrier layer exposed by an air gap region adjacent to a sidewall of the first conductive pattern, and a second conductive pattern on the first conductive pattern, the second conductive pattern penetrating the insulating diffusion barrier layer so as to be in contact with the first conductive pattern.
Abstract:
In a method of forming a wiring structure, an insulating interlayer is formed on a substrate. The insulating interlayer includes an opening and has pores distributed therein and exposed at a surface thereof. The insulating interlayer is exposed to a silane compound to form a pore sealing layer on the surface of the insulating interlayer and a sidewall of the opening. A conductive pattern filling the opening is formed on the pore sealing layer.
Abstract:
Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a fast etching region comprising phosphorous in an active region and forming a first trench in the active region by recessing the fast etching region. The methods may also include forming a second trench in the active region by enlarging the first trench using a directional etch process and forming a stressor in the second trench. The second trench may include a notched portion of the active region.
Abstract:
Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a trench in an active region and the trench may include a notched portion of the active region. The methods may also include forming an embedded stressor in the trench. The embedded stressor may include a lower semiconductor layer and an upper semiconductor layer, which has a width narrower than a width of the lower semiconductor layer. A side of the upper semiconductor layer may not be aligned with a side of the lower semiconductor layer and an uppermost surface of the upper semiconductor layer may be higher than an uppermost surface of the active region.